Arch & Shell Systems

- curved, thin surface or 2D structures
- see very little bending stresses
- design for
 - axial stresses
 - shear stresses
- efficient because of uniformly distributed loads

Office Hours

link to posted schedule
http://faculty.arch.tamu.edu/anichols/schedule/

Arches

- behavior
 - stabilization
 - resist thrust
- compression only

Milenium Bridge in Newcastle, UK
Shell Types

• shape classifications
 – developable:
 • revolution (vault)
 – synclastic
 • doubly curved
 • same direction
 – anticlastic:
 • doubly curved
 • opposite curvature
 – free form

Vaults

• “wide” arch

Vaulted Shells

• can resist tension
• shape adds “depth”

Kimball Museum, Kahn 1972

http://nisee.berkeley.edu/godden
Kimball Museum, Kahn 1972

- outer shell edges

Domes

- arch of revolution
- compression
- some tension

Kimball Museum, Kahn 1972

- skylights at peak

Domes

- stresses and displacements
Annunciation Greek Orthodox Church

- Wright, 1956

Annunciation Greek Orthodox Church

- Wright, 1956

Anticlastic Shells

- saddle or “ruled” shapes
- surface generated with straight lines

- tension follows “cable drape”
- compression follows “arch”

Zarzuela Hippodrome, Torroja 1935

http://www.bluffton.edu
Zarzuela Hippodrome, Torroja 1935

Folded Plates

- increased stiffness with folding

State Farm Center, Harrison & Abramovitz 1963

- State Farm Center (Assembly Hall), University of Illinois
- Harrison & Abramovitz 1963
- Edge-supported dome spanning 400 feet wound with 614 miles of one-fifth inch steel wire

Systems

- total of components
- behavior of whole
- classifications
 - one-way
 - two-way
 - tubes
 - braced
 - unbraced
One-Way Systems

- horizontal vs. vertical

Two-Way Systems

- spanning system less obvious
 - horizontal
 - plates
 - slabs
 - space frames
- vertical
 - columns
 - walls

System Selection

- evaluation of alternatives
Structural Design Criteria

• components stay together
• structure acts as whole to be stable
 – resist sliding
 – resist overturning
 – resist twisting and distortion
• internal stability
 – interconnectedness
• strength & stiffness

Structural Design Sequences

• first-order design
 – structural type and organization
 – design intent
 – contextual or programmatic
• second-order
 – structural strategies
 – material choice
 – structural systems
• third-order
 – member shaping & sizing

Design Issues

• lateral stability – all directions

Design Issues

• configuration
Design Issues

- **vertical load resistance**

 - Walls
 - Columns

Design Issues

- **lateral load resistance**

 - Shear walls may be arranged in a two-form to resist lateral forces from all directions.

 - When combined with other stabilizing mechanisms, shear walls may be arranged so as to resist forces in only one direction of a building.

Design Issues

- **lateral load resistance**

Design Issues

- **multi-story**
 - Cores, tubes, braced frames
Design Issues

- multi-story
 - avoid discontinuities
 - vertically
 - horizontally

Final Exam Material

my list:

- equilibrium - ΣF & ΣM
 - supports, trusses, cables, beams, pinned frames, rigid frames

- materials
 - strain & stress (E), temperature, constraints

- beams
 - distributed loads, tributary width, V&M, stresses, design, section properties (I & S), pitch, deflection

Final Exam Material (continued):

- columns
 - stresses, design, section properties (I & r)

- frames
 - P, V & M, $P-\Delta$, effective length with joint stiffness, connection design, tension member design

- foundations
 - types
 - sizing & structural design
 - overturning and sliding

Final Exam Material (continued):

- systems
 - levels
 - design considerations

- design specifics
 - steel (ASD & LRFD)
 - concrete
 - wood
 - masonry