Elements of Architectural Structures: Form, Behavior, and Design

Arch & Shell Systems
- curved, thin surface or 2D structures
- see very little bending stresses
- design for
 - axial stresses
 - shear stresses
- efficient because of uniformly distributed loads

Arches
- behavior
 - stabilization
 - resist thrust
- compression only

Office Hours

link to posted schedule
http://faculty.arch.tamu.edu/anichols/schedule/
Shell Types

- **shape classifications**
 - developable:
 - revolution (vault)
 - synclastic
 - doubly curved
 - same direction
 - anticlastic:
 - doubly curved
 - opposite curvature
 - free form

Vaults

- “wide” arch

Vaulted Shells

- can resist tension
- shape adds “depth”

Kimball Museum, Kahn 1972
Kimball Museum, Kahn 1972

- outer shell edges

![Outer shell edges diagram](image1.png)

Kimball Museum, Kahn 1972

- skylights at peak

![Skylights at peak](image2.png)

Domes

- arch of revolution
- compression
- some tension

![Domes diagram](image3.png)

Domes

- stresses and displacements

![Domes stresses and displacements](image4.png)
Annunciation Greek Orthodox Church

- Wright, 1956

Anticlastic Shells

- saddle or “ruled” shapes
- surface generated with straight lines
- tension follows “cable drape”
- compression follows “arch”

Zarzuela Hippodrome, Torroja 1935
Zarzuela Hippodrome, Torroja 1935

- tie-down prevents cantilever from sloping forward
- uplift of tie-down helps support floor and canopy
- shell collects roof load and transfers it to column

Folded Plates

- increased stiffness with folding

State Farm Center, Harrison & Abramovitz 1963

- State Farm Center (Assembly Hall), University of Illinois
- Harrison & Abramovitz 1963
- Edge-supported dome spanning 400 feet wound with 614 miles of one-fifth inch steel wire

Systems

- total of components
- behavior of whole
- classifications
 - one-way
 - two-way
 - tubes
 - braced
 - unbraced
One-Way Systems
• horizontal vs. vertical

Two-Way Systems
• spanning system less obvious
• horizontal
 – plates
 – slabs
 – space frames
• vertical
 – columns
 – walls

System Selection
• evaluation of alternatives
Structural Design Criteria

- components stay together
- structure acts as whole to be stable
 - resist sliding
 - resist overturning
 - resist twisting and distortion
- internal stability
 - interconnectedness
- strength & stiffness

Structural Design Sequences

- first-order design
 - structural type and organization
 - design intent
 - contextual or programmatic
- second-order
 - structural strategies
 - material choice
 - structural systems
- third-order
 - member shaping & sizing

Design Issues

- lateral stability – all directions

Design Issues

- configuration
Design Issues

• vertical load resistance

walls columns

Design Issues

• lateral load resistance

Design Issues

• lateral load resistance

• multi-story
 – cores, tubes, braced frames
Design Issues

- multi-story
 - avoid discontinuities
 - vertically
 - horizontally

Final Exam Material

- my list:
 - equilibrium - ΣF & ΣM
 - supports, trusses, cables, beams, pinned frames, rigid frames
 - materials
 - strain & stress (E), temperature, constraints
 - beams
 - distributed loads, tributary width, V&M, stresses, design, section properties (I & S), pitch, deflection

Final Exam Material

- my list (continued):
 - columns
 - stresses, design, section properties (I & r)
 - frames
 - P, V & M, $P-\Delta$, effective length with joint stiffness, connection design, tension member design
 - foundations
 - types
 - sizing & structural design
 - overturning and sliding
 - systems
 - levels
 - design considerations
 - design specifics
 - steel (ASD & LRFD)
 - concrete
 - wood
 - masonry