elements of architectural structures:
form, behavior, and design
arch 614
dr. anne nichols
spring 2014

lecture six

beam introduction & internal forces

beams

- span horizontally
 - floors
 - bridges
 - roofs

- loaded transversely by gravity loads
- may have internal axial force
- will have internal shear force
- will have internal moment (bending)

beams

- transverse loading
- sees:
 - bending
 - shear
 - deflection
 - torsion
 - bearing
- behavior depends on cross section shape

beams

- bending
 - bowing of beam with loads
 - one edge surface stretches
 - other edge surface squishes
Beam Stresses

• stress = relative force over an area
 – tensile
 – compressive
 – bending
 • tension and compression + ...

Beam Stresses

• tension and compression
 – causes moments

Beam Stresses

• prestress or post-tensioning
 – put stresses in tension area to “pre-compress”
Beam Stresses

- shear – horizontal & vertical

Beam Stresses

- shear – horizontal & vertical

Beam Stresses

- shear – horizontal

Beam Deflections

- depends on
 - load
 - section
 - material

Figure 5.4 Bending (flexural) leads via a beam.
Beam Deflections

- “moment of inertia”

Internal Beam Forces

Beam Styles

- vierendeel

- open web joists

- manufactured

Internal Forces

- trusses
 - axial only, (compression & tension)

- in general
 - axial force
 - shear force, V
 - bending moment, M

Beam Loading

- concentrated force
- concentrated moment
 - spandrel beams
Beam Loading

- uniformly distributed load (line load)
- non-uniformly distributed load
 - hydrostatic pressure = \(\gamma h \)
 - wind loads

Beam Supports

- statically determinate
 - simply supported (most common)
 - overhang
 - cantilever

- statically indeterminate
 - continuous (most common case when \(L_1 = L_2 \))
 - Propped
 - Restrained

Beam Supports

- in the real world, modeled type

Internal Forces in Beams

- like method of sections / joints
 - no axial forces
- section must be in equilibrium
- want to know where biggest internal forces and moments are for designing

V

R

M
V & M Diagrams
- tool to locate V_{max} and M_{max}
- necessary for designing
- M_{max} occurs when $V = 0$

Sign Convention

- shear force, V:
 - cut section to LEFT
 - if $\sum F_y$ is positive by statics, V acts down and is POSITIVE
 - beam has to resist shearing apart by V

Shear Sign Convention

- bending moment, M:
 - cut section to LEFT
 - if $\sum M_{\text{cut}}$ is clockwise, M acts ccw and is POSITIVE – flexes into a “smiley” beam has to resist bending apart by M
Bending Moment Sign Convention

- **(+)** Moment.
 - Compression
 - Tension

- **(−)** Moment.
 - Tension
 - Compression

Deflected Shape

- **positive bending moment**
 - Tension in bottom, compression in top

- **negative bending moment**
 - Tension in top, compression in bottom

- **zero bending moment**
 - Inflection point

Constructing V & M Diagrams

- Along the beam length, plot V, plot M

Mathematical Method

- Cut sections with x as width
- Write functions of V(x) and M(x)
Equilibrium Method

- cut sections at important places
- plot V & M

![Diagram of internal beam forces](image)

Basic Procedure

1. Find reaction forces & moments
 - Plot axes, underneath beam load diagram
 - Plot V:
 - Starting at left
 - Shear is 0 at free ends
 - Shear has 2 values at point loads
 - Sum vertical forces at each section

Equilibrium Method

- important places
 - supports
 - concentrated loads
 - start and end of distributed loads
 - concentrated moments
- free ends
 - zero forces

Equilibrium Method

- relationships

![Diagram of equilibrium method](image)

Basic Procedure

1. Find reaction forces & moments
2. Starting at left
3. Shear is 0 at free ends
4. Shear has 2 values at point loads
5. Sum vertical forces at each section
Basic Procedure

M:
6. Starting at left
7. Moment is 0 at free ends
8. Moment has 2 values at moments
9. Sum moments at each section
10. Maximum moment is where shear = 0!

Shear Through Zero

• slope of V is w (-w:1)

$$\text{load}$$

$$\text{height} = V_A$$

$$w \ (\text{force/length})$$

$$x \cdot w = V_A \Rightarrow x = \frac{V_A}{w}$$

Tools

• software & spreadsheets help
 • http://www.rekenwonder.com/atlas.htm

Tools – Multiframe

• in computer lab
Tools – Multiframe

- **frame window**
 - define beam member
 - select points, assign supports
 - select members, assign section

- **load window**
 - select point or member, add point or distributed loads

Tools – Multiframe

- to run analysis choose
 - Analyze menu
 - Linear
 - plot
 - choose options
 - double click (all)
 - results
 - choose options