Steel Design

Notation:

- a = name for width dimension
- A = name for area
- A_b = area of a bolt
- A_e = effective net area found from the product of the net area A_n by the shear lag factor U
- A_g = gross area, equal to the total area ignoring any holes
- A_{gv} = gross area subjected to shear for block shear rupture
- A_n = net area, equal to the gross area subtracting any holes, as is A_{net}
- A_{nv} = net area subjected to shear for block shear rupture
- A_w = area of the web of a wide flange section
- AISC = American Institute of Steel Construction
- ASD = allowable stress design
- b = name for a (base) width
- b_f = width of the flange of a steel beam cross section
- B_1 = factor for determining M_u for combined bending and compression
- c = largest distance from the neutral axis to the top or bottom edge of a beam
- c_1 = coefficient for shear stress for a rectangular bar in torsion
- C_b = modification factor for moment in ASD & LRFD steel beam design
- C_c = column slenderness classification constant for steel column design
- C_m = modification factor accounting for combined stress in steel design
- C_v = web shear coefficient
- d = calculus symbol for differentiation
- d_b = nominal bolt diameter
- D = shorthand for dead load
- DL = shorthand for dead load
- e = eccentricity
- E = shorthand for earthquake load
- f_c = axial compressive stress
- f_b = bending stress
- f_p = bearing stress
- f_v = shear stress
- f_{v-max} = maximum shear stress
- f_y = yield stress
- F = shorthand for fluid load
- $F_{allow(able)}$ = allowable stress
- F_a = allowable axial (compressive) stress
- F_b = allowable bending stress
- F_{cr} = flexural buckling stress
- F_e = elastic critical buckling stress
- F_{EXX} = yield strength of weld material
- F_n = nominal strength in LRFD
- F_p = allowable bearing stress
- F_t = allowable tensile stress
- F_u = ultimate stress prior to failure
- F_v = allowable shear stress
- F_y = yield strength
- F_{yw} = yield strength of web material
- F.S. = factor of safety
- g = gage spacing of staggered bolt holes
- G = relative stiffness of columns to beams in a rigid connection, as is Ψ
- h = name for a height
- h_c = height of the web of a wide flange steel section
- H = shorthand for lateral pressure load
- I = moment of inertia with respect to neutral axis bending
- I_{trial} = moment of inertia of trial section
- $I_{req'd}$ = moment of inertia required at limiting deflection
- I_y = moment of inertia about the y axis
- J = polar moment of inertia
k = distance from outer face of W flange to the web toe of fillet
= shape factor for plastic design of steel beams

K = effective length factor for columns, as is k

l = name for length

ℓ_b = length of beam in rigid joint

ℓ_c = length of column in rigid joint

L = name for length or span length
= shorthand for live load

L_b = unbraced length of a steel beam

L_e = effective length that can buckle for column design, as is ℓ_e

L_r = shorthand for live roof load
= maximum unbraced length of a steel beam in LRFD design for inelastic lateral-torsional buckling

L_p = maximum unbraced length of a steel beam in LRFD design for full plastic flexural strength

L' = length of an angle in a connector with staggered holes

LL = shorthand for live load

$LRFD$ = load and resistance factor design

M = internal bending moment

M_{b} = required bending moment (ASD)

M_{n} = nominal flexure strength with the full section at the yield stress for LRFD beam design

M_{max} = maximum internal bending moment

$M_{\text{max-adj}}$ = maximum bending moment adjusted to include self weight

M_p = internal bending moment when all fibers in a cross section reach the yield stress

M_{u} = maximum moment from factored loads for LRFD beam design

M_{y} = internal bending moment when the extreme fibers in a cross section reach the yield stress

n = number of bolts

$n.a.$ = shorthand for neutral axis

N = bearing length on a wide flange steel section
= bearing type connection with threads included in shear plane

p = bolt hole spacing (pitch)

P = name for load or axial force vector

P_a = allowable axial force
= required axial force (ASD)

$P_{\text{allowable}}$ = allowable axial force

P_c = available axial strength

P_{el} = Euler buckling strength

P_n = nominal column load capacity in LRFD steel design

P_r = required axial force

P_u = factored column load calculated from load factors in LRFD steel design

Q = first moment area about a neutral axis
= generic axial load quantity for LRFD design

r = radius of gyration

r_y = radius of gyration with respect to a y-axis

R = generic load quantity (force, shear, moment, etc.) for LRFD design
= shorthand for rain or ice load
= radius of curvature of a deformed beam

R_a = required strength (ASD)

R_n = nominal value (capacity) to be multiplied by ϕ in LRFD and divided by the safety factor Ω in ASD

R_u = factored design value for LRFD design

s = longitudinal center-to-center spacing of any two consecutive holes

S = shorthand for snow load
= section modulus
= allowable strength per length of a weld for a given size

$S_{\text{req'd}}$ = section modulus required at allowable stress

$S_{\text{req'd-adj}}$ = section modulus required at allowable stress when moment is adjusted to include self weight

SC = slip critical bolted connection
Steel Design

Structural design standards for steel are established by the *Manual of Steel Construction* published by the American Institute of Steel Construction, and uses **Allowable Stress Design** and **Load and Factor Resistance Design**. With the 13th edition, both methods are combined in one volume which provides common requirements for analyses and design and requires the application of the same set of specifications.
Materials

American Society for Testing Materials (ASTM) is the organization responsible for material and other standards related to manufacturing. Materials meeting their standards are guaranteed to have the published strength and material properties for a designation.

A36 – carbon steel used for plates, angles
- $F_y = 36$ ksi, $F_u = 58$ ksi, $E = 29,000$ ksi

A572 – high strength low-alloy use for some beams
- $F_y = 60$ ksi, $F_u = 75$ ksi, $E = 30,000$ ksi

A992 – for building framing used for most beams
- $F_y = 50$ ksi, $F_u = 65$ ksi, $E = 30,000$ ksi
(A572 Grade 50 has the same properties as A992)

ASD

$$R_a \leq \frac{R_n}{\Omega}$$

where
- $R_a = \text{required strength (dead or live; force, moment or stress)}$
- $R_n = \text{nominal strength specified for ASD}$
- $\Omega = \text{safety factor}$

Factors of Safety are applied to the limit stresses for allowable stress values:

- bending (braced, $L_b < L_p$)
 - $\Omega = 1.67$
- bending (unbraced, $L_p < L_b$ and $L_b > L_r$)
 - $\Omega = 1.67$ (nominal moment reduces)
- shear (beams)
 - $\Omega = 1.5$ or 1.67
- shear (bolts)
 - $\Omega = 2.00$ (tabular nominal strength)
- shear (welds)
 - $\Omega = 2.00$

- L_b is the unbraced length between bracing points, laterally
- L_p is the limiting laterally unbraced length for the limit state of yielding
- L_r is the limiting laterally unbraced length for the limit state of inelastic lateral-torsional buckling

LRFD

$$R_a \leq \phi R_n$$

where
- $\phi = \text{resistance factor}$
- $\gamma = \text{load factor for the type of load}$
- $R = \text{load (dead or live; force, moment or stress)}$
- $R_n = \text{factored load (moment or stress)}$
- $R_a = \text{nominal load (ultimate capacity; force, moment or stress)}$

Nominal strength is defined as the capacity of a structure or component to resist the effects of loads, as determined by computations using specified material strengths (such as yield strength, F_y, or ultimate strength, F_u) and dimensions and formulas derived from accepted principles of structural mechanics or by field tests or laboratory tests of scaled models, allowing for modeling effects and differences between laboratory and field conditions.
Factored Load Combinations

The design strength, \(\phi R_n \), of each structural element or structural assembly must equal or exceed the design strength based on the ASCE-7 (2010) combinations of factored nominal loads:

\[
1.4D \\
1.2D + 1.6L + 0.5(L, or S or R) \\
1.2D + 1.6(L, or S or R) + (L or 0.5W) \\
1.2D + 1.0W + L + 0.5(L, or S or R) \\
1.2D + 1.0E + L + 0.2S \\
0.9D + 1.0W \\
0.9D + 1.0E
\]

Criteria for Design of Beams

Allowable normal stress or normal stress from LRFD should not be exceeded:

\[
F_b \text{ or } \phi F_n \geq f_b = \frac{Mc}{I} \quad (M_a \leq M_n / \Omega \text{ or } M_a \leq \phi_b M_n)
\]

Knowing \(M \) and \(F_b \), the minimum section modulus fitting the limit is:

\[
S_{req'd} \geq \frac{M}{F_b}
\]

Determining Maximum Bending Moment

Drawing \(V \) and \(M \) diagrams will show us the maximum values for design. Remember:

\[
V = \Sigma(-w)dx \\
M = \Sigma(V)dx \\
\frac{dV}{dx} = -w \\
\frac{dM}{dx} = V
\]

Determining Maximum Bending Stress

For a prismatic member (constant cross section), the maximum normal stress will occur at the maximum moment.

For a non-prismatic member, the stress varies with the cross section AND the moment.

Deflections

If the bending moment changes, \(M(x) \) across a beam of constant material and cross section then the curvature will change:

\[
\frac{1}{R} = \frac{M(x)}{EI}
\]

The slope of the n.a. of a beam, \(\theta \), will be tangent to the radius of curvature, \(R \):

\[
\theta = \text{slope} = \frac{1}{EI} \int M(x)dx
\]

The equation for deflection, \(y \), along a beam is:

\[
y = \frac{1}{EI} \int \theta dx = \frac{1}{EI} \int \int M(x)dx
\]
Elastic curve equations can be found in handbooks, textbooks, design manuals, etc. Computer programs can be used as well. Elastic curve equations can be superimposed ONLY if the stresses are in the elastic range.

The deflected shape is roughly the same shape flipped as the bending moment diagram but is constrained by supports and geometry.

Allowable Deflection Limits

All building codes and design codes limit deflection for beam types and damage that could happen based on service condition and severity.

\[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} = \frac{L}{L_{\text{value}}} \]

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>

Lateral Buckling

With compression stresses in the top of a beam, a sudden “popping” or buckling can happen even at low stresses. In order to prevent it, we need to brace it along the top, or laterally brace it, or provide a bigger \(I_y \).

Local Buckling in Steel Wide-flange Beams—Web Crippling or Flange Buckling

Concentrated forces on a steel beam can cause the web to buckle (called **web crippling**). Web stiffeners under the beam loads and bearing plates at the supports reduce that tendency. Web stiffeners also prevent the web from shearing in plate girders.
The maximum support load and interior load can be determined from:

\[P_{n(\text{max-end})} = (2.5k + N)F_{yw}t_w \]
\[P_{n(\text{interior})} = (5k + N)F_{yw}t_w \]

where \(t_w \) = thickness of the web
\(F_{yw} \) = yield strength of the web
\(N \) = bearing length
\(k \) = dimension to fillet found in beam section tables

\[\phi = 1.00 \text{ (LRFD)} \quad \Omega = 1.50 \text{ (ASD)} \]

Beam Loads & Load Tracing

In order to determine the loads on a beam (or girder, joist, column, frame, foundation...) we can start at the top of a structure and determine the *tributary area* that a load acts over and the beam needs to support. Loads come from material weights, people, and the environment. This area is assumed to be from half the distance to the next beam over to halfway to the next beam.

The reactions must be supported by the next lower structural element *ad infinitum*, to the ground.

LRFD - Bending or Flexure

For determining the flexural design strength, \(\phi_bM_n \), for resistance to pure bending (no axial load) in most flexural members where the following conditions exist, a single calculation will suffice:

\[\Sigma \gamma_i R_i = M_u \leq \phi_bM_n = 0.9F_yZ \]

where \(M_u \) = maximum moment from factored loads
\(\phi_b \) = resistance factor for bending = 0.9
\(M_n \) = nominal moment (ultimate capacity)
\(F_y \) = yield strength of the steel
\(Z \) = plastic section modulus

Plastic Section Modulus

Plastic behavior is characterized by a yield point and an increase in strain with no increase in stress.
Internal Moments and Plastic Hinges

Plastic hinges can develop when all of the material in a cross section sees the yield stress. Because all the material at that section can strain without any additional load, the member segments on either side of the hinge can rotate, possibly causing instability.

For a rectangular section:

Elastic to f_y:
$$ M_y = \frac{I}{c} f_y = \frac{bh^2}{6} f_y = \frac{b(2c)^2}{6} f_y = \frac{2bc^2}{3} f_y $$

Fully Plastic:
$$ M_{ult} \text{ or } M_p = bc^2 f_y = \frac{3}{2} M_y $$

For a non-rectangular section and internal equilibrium at σ_y, the n.a. will not necessarily be at the centroid. The n.a. occurs where the $A_{tension} = A_{compression}$. The reactions occur at the centroids of the tension and compression areas.

Instability from Plastic Hinges

Shape Factor:

The ratio of the plastic moment to the elastic moment at yield:

$$ k = \frac{M_p}{M_y} $$

- $k = 3/2$ for a rectangle
- $k \approx 1.1$ for an I beam

Plastic Section Modulus

$$ Z = \frac{M_p}{f_y} \quad \text{and} \quad k = \frac{Z}{S} $$
Design for Shear

\[V_a \leq V_n / \Omega \quad \text{or} \quad V_a \leq \phi_n V_n \]

The nominal shear strength is dependent on the cross section shape. Case 1: With a thick or stiff web, the shear stress is resisted by the web of a wide flange shape (with the exception of a handful of W’s). Case 2: When the web is not stiff for doubly symmetric shapes, singly symmetric shapes (like channels) (excluding round high strength steel shapes), inelastic web buckling occurs. When the web is very slender, elastic web buckling occurs, reducing the capacity even more:

Case 1) For \(h/t_w \leq 2.24 \frac{E}{F_y} \frac{V_n}{V_y w A_w} \) \(\phi_v = 1.00 \) (LRFD) \(\Omega = 1.50 \) (ASD)

where \(h \) equals the clear distance between flanges less the fillet or corner radius for rolled shapes
\(V_n = \) nominal shear strength
\(F_yw = \) yield strength of the steel in the web
\(A_w = t_w d = \) area of the web

Case 2) For \(h/t_w > 2.24 \frac{E}{F_y} \frac{V_n}{V_y w A_w C_v} \) \(\phi_v = 0.9 \) (LRFD) \(\Omega = 1.67 \) (ASD)

where \(C_v \) is a reduction factor (1.0 or less by equation)

Design for Flexure

\[M_a \leq M_n / \Omega \quad \text{or} \quad M_a \leq \phi_b M_n \quad \phi_b = 0.90 \) (LRFD) \(\Omega = 1.67 \) (ASD)

The nominal flexural strength \(M_n \) is the lowest value obtained according to the limit states of

1. yielding, limited at length \(L_p = 1.76r_y \sqrt{\frac{E}{F_y}} \), where \(r_y \) is the radius of gyration in y
2. lateral-torsional buckling limited at length \(L_r \)
3. flange local buckling
4. web local buckling

Beam design charts show available moment, \(M_n / \Omega \) and \(\phi_b M_n \), for unbraced length, \(L_{db} \) of the compression flange in one-foot increments from 1 to 50 ft. for values of the bending coefficient \(C_b = 1 \). For values of \(1 < C_b < 2.3 \), the required flexural strength \(M_u \) can be reduced by dividing it by \(C_b \). \(C_b = 1 \) when the bending moment at any point within an unbraced length is larger than that at both ends of the length. \(C_b \) of 1 is conservative and permitted to be used in any case. When the free end is unbraced in a cantilever or overhang, \(C_b = 1 \). The full formula is provided below.)

NOTE: the self weight is not included in determination of \(M_n / \Omega \quad \phi_b M_n \)
Compact Sections

For a laterally braced compact section (one for which the plastic moment can be reached before local buckling) only the limit state of yielding is applicable. For unbraced compact beams and non-compact tees and double angles, only the limit states of yielding and lateral-torsional buckling are applicable.

Compact sections meet the following criteria:

\[
\frac{b_f}{2t_f} \leq 0.38 \sqrt{\frac{E}{F_y}} \quad \text{and} \quad \frac{h_c}{t_w} \leq 3.76 \sqrt{\frac{E}{F_y}}
\]

where:
- \(b_f\) = flange width in inches
- \(t_f\) = flange thickness in inches
- \(E\) = modulus of elasticity in ksi
- \(F_y\) = minimum yield stress in ksi
- \(h_c\) = height of the web in inches
- \(t_w\) = web thickness in inches

With lateral-torsional buckling the nominal flexural strength is

\[
M_n = C_b \left[M_p - (M_p - 0.7F_yS_x) \left(\frac{L_b - L_p}{L_b - L_p} \right) \right] \leq M_p
\]

where \(C_b\) is a modification factor for non-uniform moment diagrams where, when both ends of the beam segment are braced:

\[
C_b = \frac{12.5M_{\text{max}}}{2.5M_{\text{max}} + 3M_A + 4M_B + 3M_C}
\]

\(M_{\text{max}}\) = absolute value of the maximum moment in the unbraced beam segment
\(M_A\) = absolute value of the moment at the quarter point of the unbraced beam segment
\(M_B\) = absolute value of the moment at the center point of the unbraced beam segment
\(M_C\) = absolute value of the moment at the three quarter point of the unbraced beam segment length.

Available Flexural Strength Plots

Plots of the available moment for the unbraced length for wide flange sections are useful to find sections to satisfy the design criteria of \(M_a \leq M_n / \Omega \text{ or } M_a \leq \phi_p M_n\). The maximum moment that can be applied on a beam (taking self weight into account), \(M_a\) or \(M_u\), can be plotted against the unbraced length, \(L_b\). The limiting length, \(L_p\) (fully plastic), is indicated by a solid dot (●), while the limiting length, \(L_r\) (for lateral torsional buckling), is indicated by an open dot (○). Solid lines indicate the most economical, while dashed lines indicate there is a lighter section that could be used. \(C_b\), which is a modification factor for non-zero moments at the ends, is 1 for simply supported beams (0 moments at the ends). (see figure)
Design Procedure

The intent is to find the most lightweight member (which is economical) satisfying the section modulus size.

1. Determine the unbraced length to choose the limit state (yielding, lateral torsional buckling or more extreme) and the factor of safety and limiting moments. Determine the material.

2. Draw V & M, finding V_{max} and M_{max} for unfactored loads (ASD, V_a & M_a) or from factored loads (LRFD, V_u & M_u)

3. Calculate $Z_{\text{req'd}}$ when yielding is the limit state. This step is equivalent to determining if

$$f_b = \frac{M_{\text{max}}}{S} \leq F_b, \quad Z_{\text{req'd}} \geq \frac{M_{\text{max}}}{F_y} = \frac{M_{\text{max}}}{F_y}$$

and

$$Z_{\text{req'd}} \geq \frac{M_u}{\phi_b F_y}$$

to meet the design criteria that

$$M_a \leq M_n / \Omega \quad \text{or} \quad M_a \leq \phi_b M_n$$

If the limit state is something other than yielding, determine the nominal moment, M_n, or use plots of available moment to unbraced length, L_b.

4. For steel: use the section charts to find a trial Z and remember that the beam self weight (the second number in the section designation) will increase $Z_{\text{req'd}}$. The design charts show the lightest section within a grouping of similar Z's.

**** Determine the “updated” V_{max} and M_{max} including the beam self weight, and verify that the updated $Z_{\text{req'd}}$ has been met.****
5. Consider lateral stability.

6. Evaluate horizontal shear using V_{max}. This step is equivalent to determining if $f_v \leq F_v$ is satisfied to meet the design criteria that $V_a \leq V_n / \Omega \text{ or } V_a \leq \phi V_n$

 For I beams:
 $$f_{v \text{-max}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}} = \frac{V}{t_w d} \quad V_n = 0.6F_{yw}A_w \text{ or } V_n = 0.6F_{yw}A_wC_y$$

 Others:
 $$f_{v \text{-max}} = \frac{VQ}{lb}$$

7. Provide adequate bearing area at supports. This step is equivalent to determining if $f_p = \frac{P}{A} \leq F_p$ is satisfied to meet the design criteria that $P_a \leq P_n / \Omega \text{ or } P_a \leq \phi P_n$

8. Evaluate shear due to torsion
 $$f_v = \frac{T_p}{J} \text{ or } \frac{T}{c,ab^2} \leq F_v \text{ (circular section or rectangular)}$$

9. Evaluate the deflection to determine if $\Delta_{\text{max LL}} \leq \Delta_{\text{LL-allowed}}$ and/or $\Delta_{\text{max Total}} \leq \Delta_{\text{Total allowed}}$

 **note: when $\Delta_{\text{calculated}} > \Delta_{\text{limit}}$, $I_{\text{req'd}}$ can be found with:
 and $Z_{\text{req'd}}$ will be satisfied for similar self weight****
 $$I_{\text{req'd}} \geq \frac{A_{\text{mob}}}{\Delta_{\text{limit}}} I_{\text{trial}}$$

FOR ANY EVALUATION:

 Redesign (with a new section) at any point that a stress or serviceability criteria is NOT satisfied and re-evaluate each condition until it is satisfactory.

Load Tables for Uniformly Loaded Joists & Beams

Tables exist for the common loading situation of uniformly distributed load. The tables either provide the safe distributed load based on bending and deflection limits, they give the allowable span for specific live and dead loads including live load deflection limits. If the load is not uniform, an equivalent uniform load can be calculated from the maximum moment equation:

If the deflection limit is less, the design live load to check against allowable must be increased, ex.

Criteria for Design of Columns

If we know the loads, we can select a section that is adequate for strength & buckling.

If we know the length, we can find the limiting load satisfying strength & buckling.
Allowable Stress Design

American Institute of Steel Construction (AISC) Manual of ASD, 9th ed:

Long and slender: \[\frac{L_e}{r} \geq C_c, \text{ preferably} < 200 \]

\[F_{allowable} = \frac{F_{cr}}{F.S.} = \frac{12\pi^2 E}{23(Kl/r)^2} \]

The yield limit is idealized into a parabolic curve that blends into the Euler’s Formula at \(C_c \).

With \(F_y = 36 \) ksi, \(C_c = 126.1 \)

With \(F_y = 50 \) ksi, \(C_c = 107.0 \)

Short and stubby: \[\frac{L_e}{r} < C_c \]

\[F_a = \left[1 - \frac{(Kl/r)^2}{2C_c^2} \right] \frac{F_y}{F.S.} \]

with:

\[F.S. = \frac{5}{3} + \frac{3(Kl/r)}{8C_c} - \frac{(Kl/r)^3}{8C_c^3} \]

Design for Compression

American Institute of Steel Construction (AISC) Manual 14th ed:

\[P_a \leq P_n / \Omega \quad \text{or} \quad P_a \leq \phi \gamma P_n \quad \text{where} \quad P_n = \sum \gamma_i P_i \]

\(\gamma \) is a load factor
\(P \) is a load type
\(\phi \) is a resistance factor
\(P_n \) is the nominal load capacity (strength)

\(\phi = 0.90 \) (LRFD) \quad \(\Omega = 1.67 \) (ASD)

For compression \(P_n = F_{cr} A_g \)

where: \(A_g \) is the cross section area and \(F_{cr} \) is the flexural buckling stress
The flexural buckling stress, F_{cr}, is determined as follows:

- When $\frac{KL}{r} \leq 4.71 \sqrt{\frac{E}{F_y}}$ or $(F_e \geq 0.44F_y)$:

 $$F_{cr} = \left[\frac{F_e}{F_y} \right] \cdot 0.658$$

- When $\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}$ or $(F_e < 0.44F_y)$:

 $$F_{cr} = 0.877F_e$$

where F_e is the elastic critical buckling stress:

$$F_e = \frac{\pi^2E}{(KL/r)^2}$$

Design Aids

Tables exist for the value of the flexural buckling stress based on slenderness ratio. In addition, tables are provided in the AISC Manual for Available Strength in Axial Compression based on the effective length with respect to least radius of gyration, r_y. If the critical effective length is about the largest radius of gyration, r_x, it can be turned into an effective length about the y axis by dividing by the fraction r_x/r_y.

Table 4-1 (continued) - Available Strength in Axial Compression, kips

<table>
<thead>
<tr>
<th>Shape</th>
<th>W12</th>
<th>W16</th>
<th>W20</th>
<th>W24</th>
<th>W28</th>
<th>W32</th>
<th>W36</th>
<th>W40</th>
<th>W42</th>
<th>W44</th>
<th>W48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flange Width (in)</td>
<td>644</td>
<td>611</td>
<td>579</td>
<td>549</td>
<td>520</td>
<td>492</td>
<td>466</td>
<td>442</td>
<td>419</td>
<td>397</td>
<td>376</td>
</tr>
<tr>
<td>Design W12</td>
<td>120</td>
<td>111</td>
<td>103</td>
<td>96</td>
<td>89</td>
<td>83</td>
<td>78</td>
<td>74</td>
<td>71</td>
<td>68</td>
<td>65</td>
</tr>
<tr>
<td>W16</td>
<td>103</td>
<td>96</td>
<td>89</td>
<td>83</td>
<td>78</td>
<td>74</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>62</td>
<td>59</td>
</tr>
<tr>
<td>W20</td>
<td>89</td>
<td>83</td>
<td>78</td>
<td>74</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>62</td>
<td>59</td>
<td>57</td>
<td>54</td>
</tr>
<tr>
<td>W24</td>
<td>78</td>
<td>74</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>62</td>
<td>59</td>
<td>57</td>
<td>54</td>
<td>52</td>
<td>50</td>
</tr>
<tr>
<td>W28</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>62</td>
<td>59</td>
<td>57</td>
<td>54</td>
<td>52</td>
<td>50</td>
<td>48</td>
<td>46</td>
</tr>
<tr>
<td>W32</td>
<td>68</td>
<td>65</td>
<td>62</td>
<td>59</td>
<td>57</td>
<td>54</td>
<td>52</td>
<td>50</td>
<td>48</td>
<td>46</td>
<td>44</td>
</tr>
<tr>
<td>W36</td>
<td>65</td>
<td>62</td>
<td>59</td>
<td>57</td>
<td>54</td>
<td>52</td>
<td>50</td>
<td>48</td>
<td>46</td>
<td>44</td>
<td>42</td>
</tr>
<tr>
<td>W40</td>
<td>62</td>
<td>59</td>
<td>57</td>
<td>54</td>
<td>52</td>
<td>50</td>
<td>48</td>
<td>46</td>
<td>44</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td>W42</td>
<td>59</td>
<td>57</td>
<td>54</td>
<td>52</td>
<td>50</td>
<td>48</td>
<td>46</td>
<td>44</td>
<td>42</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td>W44</td>
<td>57</td>
<td>54</td>
<td>52</td>
<td>50</td>
<td>48</td>
<td>46</td>
<td>44</td>
<td>42</td>
<td>40</td>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td>W48</td>
<td>54</td>
<td>52</td>
<td>50</td>
<td>48</td>
<td>46</td>
<td>44</td>
<td>42</td>
<td>40</td>
<td>38</td>
<td>36</td>
<td>34</td>
</tr>
<tr>
<td>Effective length (ft) with respect to least radius of gyration</td>
<td>96</td>
</tr>
</tbody>
</table>

Sample AISC Table for Available Strength in Axial Compression
Procedure for Analysis
1. Calculate KL/r for each axis (if necessary). The largest will govern the buckling load.
2. Find \(F_a \) or \(F_{cr} \) as a function of KL/r from the appropriate equation (above) or table.
3. Compute \(P_{allowable} = F_a \cdot A \) or \(P_n = F_{cr} \cdot A_g \)

 or alternatively compute \(f_c = P/A \) or \(P_u/A \)
4. Is the design satisfactory?

 Is \(P \leq P_{allowable} \) (or \(P_a \leq P_u/\Omega \)) or \(P_u \leq \phi_c P_n \)? ⇒ yes, it is; no, it is no good

 or Is \(f_c \leq F_a \) (or \(\leq F_{cr}/\Omega \)) or \(\phi_c F_{cr} \)? ⇒ yes, it is; no, it is no good

Procedure for Design
1. Guess a size by picking a section.
2. Calculate KL/r for each axis (if necessary). The largest will govern the buckling load.
3. Find \(F_a \) or \(F_{cr} \) as a function of KL/r from appropriate equation (above) or table.
4. Compute \(P_{allowable} = F_a \cdot A \) or \(P_n = F_{cr} \cdot A_g \)

 or alternatively compute \(f_c = P/A \) or \(P_u/A \)
5. Is the design satisfactory?

 Is \(P \leq P_{allowable} \) (or \(P_a \leq P_u/\Omega \)) or \(P_u \leq \phi_c P_n \)? yes, it is; no, pick a bigger section and go back to step 2.

 Is \(f_c \leq F_a \) (or \(\leq F_{cr}/\Omega \)) or \(\phi_c F_{cr} \)? ⇒ yes, it is; no, pick a bigger section and go back to step 2.
6. Check design efficiency by calculating percentage of stress used:

 \[
 \frac{P}{P_{allowable}} \cdot 100\% \left(\frac{P_a}{P_u/\Omega} \cdot 100\% \right) \text{ or } \frac{P_u}{\phi_c P_n} \cdot 100\%
 \]

 If value is between 90-100%, it is efficient.

 If values is less than 90%, pick a smaller section and go back to step 2.

Columns with Bending (Beam-Columns)
In order to design an adequate section for allowable stress, we have to start somewhere:

1. Make assumptions about the limiting stress from:
 - buckling
 - axial stress
 - combined stress
2. See if we can find values for \(r \) or \(A \) or \(Z \)
3. Pick a trial section based on if we think \(r \) or \(A \) is going to govern the section size.
4. Analyze the stresses and compare to allowable using the allowable stress method or interaction formula for eccentric columns.

5. Did the section pass the stress test?
 - If not, do you increase \(r \) or \(A \) or \(Z \)?
 - If so, is the difference really big so that you could decrease \(r \) or \(A \) or \(Z \) to make it more efficient (economical)?

6. Change the section choice and go back to step 4. Repeat until the section meets the stress criteria.

Design for Combined Compression and Flexure:

The interaction of compression and bending are included in the form for two conditions based on the size of the required axial force to the available axial strength. This is notated as \(P_r \) (either \(P \) from ASD or \(P_u \) from LRFD) for the axial force being supported, and \(P_c \) (either \(P_n/\Omega \) for ASD or \(\phi_c P_n \) for LRFD). The increased bending moment due to the P-\(\Delta \) effect must be determined and used as the moment to resist.

For \(\frac{P_r}{P_c} \geq 0.2 \) :

\[
\frac{P}{P_n/\Omega} + \frac{8}{9} \left(\frac{M_x}{M_{nx}/\Omega} + \frac{M_y}{M_{ny}/\Omega} \right) \leq 1.0
\]

(ASD)

\[
\frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}/\Omega} + \frac{M_{uy}}{\phi_b M_{ny}/\Omega} \right) \leq 1.0
\]

(LRFD)

For \(\frac{P_r}{P_c} < 0.2 \) :

\[
\frac{P}{2P_n/\Omega} + \left(\frac{M_x}{M_{nx}/\Omega} + \frac{M_y}{M_{ny}/\Omega} \right) \leq 1.0
\]

(ASD)

\[
\frac{P_u}{2\phi_c P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}/\Omega} + \frac{M_{uy}}{\phi_b M_{ny}/\Omega} \right) \leq 1.0
\]

(LRFD)

where:

- for compression \(\phi_c = 0.90 \) (LRFD) \(\Omega = 1.67 \) (ASD)
- for bending \(\phi_b = 0.90 \) (LRFD) \(\Omega = 1.67 \) (ASD)

For a braced condition, the moment magnification factor \(B_l \) is determined by

\[
B_l = \frac{C_m}{1 - (P_u/P_{el})} \geq 1.0
\]

where \(C_m \) is a modification factor accounting for end conditions.

When not subject to transverse loading between supports in plane of bending:

\(= 0.6 - 0.4 \) (\(M_1/M_2 \)) where \(M_1 \) and \(M_2 \) are the end moments and \(M_1 < M_2 \). \(M_1/M_2 \) is positive when the member is bent in reverse curvature (same direction), negative when bent in single curvature.

When there is transverse loading between the two ends of a member:

\(= 0.85 \), members with restrained (fixed) ends

\(= 1.00 \), members with unrestrained ends

\(P_{el} = \frac{\pi^2 EA}{(KL/r)^2} \)

\(P_{el} \) = Euler buckling strength
Criteria for Design of Connections

Connections must be able to transfer any axial force, shear, or moment from member to member or from beam to column.

Connections for steel are typically high strength bolts and electric arc welds. Recommended practice for ease of construction is to specified shop welding and field bolting.

Bolted and Welded Connections

The limit state for connections depends on the loads:

1. tension yielding
2. shear yielding
3. bearing yielding
4. bending yielding due to eccentric loads
5. rupture

Welds must resist shear stress. The design strengths depend on the weld materials.

Bolted Connection Design

Bolt designations signify material and type of connection where

SC: slip critical
N: bearing-type connection with bolt threads included in shear plane
X: bearing-type connection with bolt threads excluded from shear plane

A307: similar in strength to A36 steel (also known as ordinary, common or unfinished bolts)
A325: high strength bolts (Group A)
A490: high strength bolts (higher than A325) (Group B)
Bearing-type connection: no frictional resistance in the contact surfaces is assumed and slip between members occurs as the load is applied. (Load transfer through bolt only).

Slip-critical connections: bolts are torqued to a high tensile stress in the shank, resulting in a clamping force on the connected parts. (Shear resisted by clamping force). Requires inspections and is useful for structures seeing dynamic or fatigue loading.

Class A indicates the faying (contact) surfaces are clean mill scale or adequate paint system, while Class B indicates blast cleaning or paint for $\mu = 0.50$.

Bolts rarely fail in bearing. The material with the hole will more likely yield first.

For the determination of the net area of a bolt hole the width is taken as $1/16''$ greater than the nominal dimension of the hole. Standard diameters for bolt holes are $1/16''$ larger than the bolt diameter. (This means the net width will be $1/8''$ larger than the bolt.)

Design for Bolts in Bearing, Shear and Tension

Available shear values are given by bolt type, diameter, and loading (Single or Double shear) in AISC manual tables. Available shear value for slip-critical connections are given for limit states of serviceability or strength by bolt type, hole type (standard, short-slotted, long-slotted or oversized), diameter, and loading. Available tension values are given by bolt type and diameter in AISC manual tables.

Available bearing force values are given by bolt diameter, ultimate tensile strength, F_u, of the connected part, and thickness of the connected part in AISC manual tables.

For shear OR tension (same equation) in bolts:

$$R_a \leq R_n / \Omega \quad \text{or} \quad R_a \leq \phi R_n$$

where $R_a = \Sigma \gamma_i R_i$

- single shear (or tension) $R_n = F_n A_b$
- double shear $R_n = F_n 2 A_b$

where $\phi =$ the resistance factor

$F_n =$ the nominal tension or shear strength of the bolt

$A_b =$ the cross section area of the bolt

$\phi = 0.75$ (LRFD) $\quad \Omega = 2.00$ (ASD)

For bearing of plate material at bolt holes:

$$R_a \leq R_n / \Omega \quad \text{or} \quad R_a \leq \phi R_n$$

where $R_a = \Sigma \gamma_i R_i$

- deformation at bolt hole is a concern

$$R_n = 1.2 L_c t F_n \leq 2.4 dt F_u$$

- deformation at bolt hole is not a concern

$$R_n = 1.5 L_c t F_n \leq 3.0 dt F_u$$

- long slotted holes with the slot perpendicular to the load

$$R_n = 1.0 L_c t F_n \leq 2.0 dt F_u$$

Figure 10.11: End tear-out.
where \(R_n \) = the nominal bearing strength
\(F_u \) = specified minimum tensile strength
\(L_c \) = clear distance between the edges of the hole and the next hole or edge in the direction of the load
\(d \) = nominal bolt diameter
\(t \) = thickness of connected material

\[\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)} \]

The minimum edge distance from the center of the outer most bolt to the edge of a member is generally 1½ times the bolt diameter for the sheared edge and 1¼ times the bolt diameter for the rolled or gas cut edges.

The maximum edge distance should not exceed 12 times the thickness of thinner member or 6 in.

Standard bolt hole spacing is 3 in. with the minimum spacing of 2 \(\frac{3}{4} \) times the diameter of the bolt, \(d_b \). Common edge distance from the center of last hole to the edge is 1¼ in.

Tension Member Design

In steel tension members, there may be bolt holes that reduce the size of the cross section.

- \(g \) refers to the row spacing or gage
- \(p \) refers to the bolt spacing or pitch
- \(s \) refers to the longitudinal spacing of two consecutive holes

Effective Net Area:

The smallest effective area must be determined by subtracting the bolt hole areas. With staggered holes, the shortest length must be evaluated.

A series of bolts can also transfer a portion of the tensile force, and some of the effective net areas see reduced stress.

The effective net area, \(A_e \), is determined from the net area, \(A_n \), multiplied by a shear lag factor, \(U \), which depends on the element type and connection configuration. If a portion of a connected member is not fully connected (like the leg of an angle), the unconnected part is not subject to the full stress and the shear lag factor can range from 0.6 to 1.0:

\[A_e = A_n U \]
The staggered hole path area is determined by:

\[A_n = A_g - A_{of\ all\ holes} + \frac{t\Sigma s^2}{4g} \]

where \(t \) is the plate thickness, \(s \) is each stagger spacing, and \(g \) is the gage spacing.

For tension elements:

\[R_n \leq R_u / \Omega \text{ or } R_n \leq \phi R_u \]

where \(R_u = \Sigma \gamma_i R_i \)

1. **yielding**

 \[R_n = F_y A_g \]

 \(\phi = 0.90 \) (LRFD) \hspace{1cm} \(\Omega = 1.67 \) (ASD)

2. **rupture**

 \[R_n = F_u A_e \]

 \(\phi = 0.75 \) (LRFD) \hspace{1cm} \(\Omega = 2.00 \) (ASD)

where \(A_g \) = the gross area of the member (excluding holes)
\(A_e \) = the effective net area (with holes, etc.)
\(F_y \) = the yield strength of the steel
\(F_u \) = the tensile strength of the steel (ultimate)

Welded Connections

Weld designations include the strength in the name, i.e. E70XX has \(F_y = 70 \) ksi. Welds are weakest in shear and are assumed to always fail in the shear mode.

The throat size, \(T \), of a fillet weld is determined trigonometry by:

\[T = 0.707 \times \text{weld size} \]

* When the submerged arc weld process is used, welds over 3/8" will have a throat thickness of 0.11 in. larger than the formula.

Weld sizes are limited by the size of the parts being put together and are given in AISC manual table J2.4 along with the allowable strength per length of fillet weld, referred to as \(S \).

The **maximum** size of a fillet weld:

a) can’t be greater than the material thickness if it is ¼” or less

b) is permitted to be 1/16” less than the thickness of the material if it is over ¼”
The **minimum length** of a fillet weld is 4 times the nominal size. If it is not, then the weld size used for design is \(\frac{1}{4} \) the length.

Intermittent fillet welds cannot be less than four times the weld size, not to be less than 1 ½”.

For fillet welds:
\[
R_u \leq R_n / \Omega \quad \text{or} \quad R_u \leq \phi R_n
\]
where \(R_u = \sum \gamma_i R_i \)

for the weld metal:
\[
R_n = 0.6F_{exx} Tl = Sl
\]
\[
\phi = 0.75 \quad (LRFD) \quad \Omega = 2.00 \quad (ASD)
\]

where:
- \(T \) is throat thickness
- \(l \) is length of the weld

For a connected part, the other limit states for the base metal, such as tension yield, tension rupture, shear yield, or shear rupture **must** be considered.

Framed Beam Connections

Coping is the term for cutting away part of the flange to connect a beam to another beam using welded or bolted angles.

AISC provides tables that give bolt and angle available strength knowing number of bolts, bolt type, bolt diameter, angle leg thickness, hole type and coping, *and* the wide flange beam being connected. For the connections the limit-state of bolt shear, bolts bearing on the angles, shear yielding of the angles, shear rupture of the angles, and block shear rupture of the angles, and bolt bearing on the beam web are considered.

Group A bolts include A325, while Group B includes A490.

There are also tables for bolted/welded double-angle connections and all-welded double-angle connections.
Limiting Strength or Stability States

In addition to resisting shear and tension in bolts and shear in welds, the connected materials may be subjected to shear, bearing, tension, flexure and even prying action. Coping can significantly reduce design strengths and may require web reinforcement. All the following must be considered:

- shear yielding
- shear rupture
- block shear rupture - failure of a block at a beam as a result of shear and tension
- tension yielding
- tension rupture
- local web buckling
- lateral torsional buckling

Block Shear Strength (or Rupture):

\[R_n \leq R_n / \Omega \] or \[R_n \leq \phi R_n \]

where \[R_n = \sum \gamma_i R_i \]

\[R_n = 0.6 F_u A_m + U_{bs} F_u A_m \leq 0.6 F_y A_{gy} + U_{bs} F_u A_m \]

\[\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)} \]
where:

- A_{nv} is the net area subjected to shear
- A_{nt} is the net area subjected to tension
- A_{gv} is the gross area subjected to shear
- $U_{bs} = 1.0$ when the tensile stress is uniform (most cases)
- $U_{bs} = 0.5$ when the tensile stress is non-uniform

Gusset Plates

Gusset plates are used for truss member connections where the geometry prevents the members from coming together at the joint “point”. Members being joined are typically double angles.

Decking

Shaped, thin sheet-steel panels that span several joists or evenly spaced support behave as continuous beams. Design tables consider a “1 unit” wide strip across the supports and determine maximum bending moment and deflections in order to provide allowable loads depending on the depth of the material.

The other structural use of decking is to construct what is called a *diaphragm*, which is a horizontal unit tying the decking to the joists that resists forces parallel to the surface of the diaphragm.

When decking supports a concrete topping or floor, the steel-concrete construction is called *composite*.

Frame Columns

Because joints can rotate in frames, the effective length of the column in a frame is harder to determine. The stiffness (EI/L) of each member in a joint determines how rigid or flexible it is. To find k, the relative stiffness, G or Ψ, must be found for both ends, plotted on the alignment charts, and connected by a line for braced and unbraced frames.

$G = \Psi = \frac{\sum EI/l_c}{\sum EI/l_b}$

where

- E = modulus of elasticity for a member
- I = moment of inertia of for a member
- l_c = length of the column from center to center
- l_b = length of the beam from center to center

- For pinned connections we typically use a value of 10 for Ψ.
- For fixed connections we typically use a value of 1 for Ψ.
Braced – non-sway frame

Unbraced – sway frame

(a) Nonsway Frames

(b) Sway Frames
Example 1 (pg 330)

*Hypothetically determine the size of section required when the deflection criteria is NOT met

Example Problem 9.16 (Figures 9.76 to 9.78)

A steel beam (A572/50) is loaded as shown. Assuming a deflection requirement of $\Delta_{\text{total}} = L/240$ and a depth restriction of 18" nominal, select the most economical section. (unified ASD)

- $F_b = 30$ ksi; $F_c = 20$ ksi; $E = 30 \times 10^3$ ksi; $F_y = 50$ ksi

\[F_y = 50 \text{ ksi} \]

\[\omega = 1 \text{ k/ft} \]

\[P = 20 \text{ k} \]

\[\omega = 1,000 + 50 = 1,050 \text{ lb/ft} = 1.05 \text{ k/ft} \]
Example 2

Given:
Select an ASTM A992 W-shape beam with a simple span of 35 feet. Limit the member to a maximum nominal depth of 18 in. Limit the live load deflection to L/360. The nominal loads are a uniform dead load of 0.45 kip/ft and a uniform live load of 0.75 kip/ft. Assume the beam is continuously braced. Use ASD of the Unified Design method.

Solution:

Material Properties:
ASTM A992 \(F_x = 50 \) ksi \(F_y = 65 \) ksi

1. The unbraced length is 0 because it says it is fully braced.

2. Find the maximum shear and moment from unfactored loads:
\[w_a = 0.450 \text{ kip/ft} + 0.750 \text{ kip/ft} = 1.20 \text{ kip/ft} \]
\[V_a = 1.20 \text{ kip/ft}(35 \text{ ft})/2 = 21 \text{ kip} \]
\[M_a = 1.20 \text{ kip/ft}(35 \text{ ft})^2/8 = 184 \text{ k-ft} \]
If \(M_a \leq M_{n/\Omega} \), the maximum moment for design is \(M_{max} = 184 \text{ k-ft} \)

3. Find \(Z_{req'd} \):
\[Z_{req'd} \geq M_{max}/F_y = 184 \text{ k-ft}/(1.67)(12 \text{ in/ft})/50 \text{ ksi} = 73.75 \text{ in}^3 \]
\(F_y \) is the limit stress when fully braced

4. Choose a trial section, and also limit the depth to 18 in as instructed:
W18 x 40 has a plastic section modulus of 78.4 in\(^3\) and is the most light weight (as indicated by the bold text) in Table 9.1

Include the self weight in the maximum values:
\[w^{a\text{-adjusted}} = 1.20 \text{ kip/ft} + 0.04 \text{ kip/ft} \]
\[V^{a\text{-adjusted}} = 1.24 \text{ kip/ft}(35 \text{ ft})/2 = 21.7 \text{ kip} \]
\[M^{a\text{-adjusted}} = 1.24 \text{ kip/ft}(35 \text{ ft})^2/8 = 189.9 \text{ k-ft} \]
\[Z_{req'd} \geq 189.9 \text{ k-ft}/(1.67)(12 \text{ in/ft})/50 \text{ ksi} = 76.11 \text{ in}^3 \]
And the \(Z \) we have (78.4) is larger than the \(Z \) we need (76.11), so OK.

6. Evaluate shear (is \(V_a \leq V_{n/\Omega} \)):
\[A_w = d t_w \] so look up section properties for W18 x 40: \(d = 17.90 \text{ in} \) and \(t_w = 0.315 \text{ in} \)
\[V_{n/\Omega} = 0.6F_yw/A_w = 0.6(50 \text{ ksi})(17.90 \text{ in})(0.315 \text{ in})/1.5 = 112.8 \text{ k} \] which is much larger than 21.7 k, so OK.

9. Evaluate the deflection with respect to the limit stated of L/360 for the live load. (If we knew the total load limit we would check that as well). The moment of inertia for the W18 x 40 is needed. \(I_x = 612 \text{ in}^4 \)
\[\Delta \text{ live-load limit} = 35 \text{ ft}(12 \text{ in/ft})/360 = 1.17 \text{ in} \]
\[\Delta = 5wL^4/384EI = 5(0.75 \text{ kip/ft})(35 \text{ ft})^4/(12 \text{ in/ft})^3/384(29 \times 10^3 \text{ ksi})(612 \text{ in}^4) = 1.42 \text{ in} \] This is TOO BIG (not less than the limit.

Find the moment of inertia needed:
\[I_{req'd} \geq \Delta_{too big} (\Delta_{too big}/\Delta_{limit} = 1.42\text{ in}(612 \text{ in}^4)/(1.17 \text{ in}) = 742.8 \text{ in}^4 \]

From Table 9.1, a W16 x 45 is larger (by \(Z \)), but not the most light weight (efficient), as is W10 x 68, W14 x 53, W18 x 46, (W21 x 44 is too deep) and W18 x 50 is bolded (efficient). (Now look up I's). (In order: \(I_x = 586, 394, 541, 712 \) and 800 in\(^4\))

Choose a W18 x 50
Example 3
For the same beam and loading of Example 1, select the most economical beam using Load and Resistance Factor Design (LRFD) with the 18" depth restriction. Assume the distributed load is dead load, and the point load is live load. \(F_y = 50 \text{ ksi} \) and \(E = 30 \times 10^3 \text{ ksi} \)

1. To find \(V_{u, \text{max}} \) and \(M_{u, \text{max}} \), factor the loads, construct a new load diagram, shear diagram and bending moment diagram.

2. To satisfy \(M_u \leq \Phi b M_n \), we find \[M_n = \frac{M_u}{\Phi b} = \frac{341.6 k}{0.9} = 379.6 k \] solve for \(Z \) needed: \[Z = \frac{M_n}{F_{y}} = \frac{379.6 k (12 \text{ in})}{50 \text{ ksi}} = 91.1 \text{ in}^3 \]

Choose a trial section from the Listing of W Shapes in Descending Order of \(Z \) by selecting the bold section at the top of the grouping satisfying our \(Z \) and depth requirement – W18 x 50 is the lightest with \(Z = 101 \text{ in}^3 \). (W22 x 44 is the lightest without the depth requirement.) Include the additional self weight (dead load) and find the maximum shear and bending moment:

\[V_{u, \text{ adjusted}} = 32.8 k + \frac{1.2(50 \text{ k/ft})28 \text{ ft}}{2(1000 \text{ lb/ft})} = 33.6 k \]

\[M_{u, \text{ adjusted}} = 341.6 k - 32.8 k - 16 k = 341.6 k \text{ ft} \]

\[Z_{\text{req'd}} \geq \frac{M_n}{\Phi b F_{y}} = \frac{347.5 k - 32.8 k - 16 k}{0.9(50 \text{ ksi})} = 92.7 \text{ in}^3 \], so \(Z \) (have) of 101 \text{ in}^3 is greater than the \(Z \) (needed).

3. Check the shear capacity to satisfy \(V_u \leq \Phi V_n \): \[A_{\text{web}} = d t_w \text{ and } d = 17.99 \text{ in.}, t_w = 0.355 \text{ in.} \text{ for the W18x50} \]

\[\Phi V_n = \Phi 0.6 F_{y} A_{w} = 1.0(0.6)(50 \text{ ksi})(17.99 \text{ in.})(0.355 \text{ in.}) = 191.6 k \]

So 33.64k \leq 191.6 k OK

4. Calculate the deflection from the unfactored loads, including the self-weight now because it is known, and satisfy the deflection criteria of \(\Delta_{LL} \leq \Delta_{LL \text{- limit}} \) and \(\Delta_{total} \leq \Delta_{total \text{- limit}} \). (This is identical to what is done in Example 1.) \(I_x = 800 \text{ in}^3 \) for the W18x50

\[\Delta_{\text{total \text{- limit}}} = L/240 = 1.4 \text{ in.}, \text{ say } \Delta_{LL} = L/360 = 0.93 \text{ in.} \]

\[\Delta_{\text{total}} = \frac{PL^3}{48EI} + \frac{5WL^4}{384EI} = \frac{-20k(28 \text{ ft})^3(12 \text{ in})^3}{48(30 \text{ ksi})(800 \text{ in}^3)} + \frac{5(1.050 k(28 \text{ ft})^4)(12 \text{ in})^3}{384(30 \times 10^3 \text{ ksi})(800 \text{ in}^3)} = 0.658 + 0.605 = 1.26 \text{ in.} \]

So 1.26 in. \leq 1.4 in., and 0.658 in. \leq 0.93 in. OK :: FINAL SELECTION IS W18x50

\[P = 20k \]
\[\omega = 1 \text{ k/ft} \]
Example 4
A steel beam with a 20 ft span is designed to be simply supported at the ends on columns and to carry a floor system made with open-web steel joists at 4 ft on center. The joists span 28 feet and frame into the beam from one side only and have a self weight of 8.5 lb/ft. Use A992 (grade 50) steel and select the most economical wide-flange section for the beam with LRFD design. Floor loads are 50 psf LL and 14.5 psf DL.
Example 5
Select a A992 W shape flexural member \((F_y = 50 \text{ ksi}, F_u = 65 \text{ ksi})\) for a beam with distributed loads of 825 lb/ft (dead) and 1300 lb/ft (live) and a live point load at midspan of 3 k using the Available Moment tables. The beam is simply supported, 20 feet long, and braced at the ends and midpoint only \((L_b = 10 \text{ ft})\). The beam is a roof beam for an institution without plaster ceilings. (LRFD)

SOLUTION:

To use the Available Moment tables, the maximum moment required is plotted against the unbraced length. The first solid line with capacity or unbraced length above what is needed is the most economical.

DESIGN LOADS (load factors applied on figure):

\[M_w = \frac{wl^2}{2} + Pb = \frac{3.07}{f_y}(20 \text{ ft})^2 + 4.8k(10 \text{ ft}) = 66.2k \quad V_w = wI + P = 3.07\frac{F_y}{f_y}(20 \text{ ft}) + 4.8k = 66.2k \]

Plotting 662 k-ft vs. 10 ft lands just on the capacity of the W21x83, but it is dashed (and not the most economical) AND we need to consider the contribution of self weight to the total moment. Choose a trial section of W24 x 76. Include the new dead load:

\[M_{w-adjusted} = 662k + \frac{1.2(76f_y)}{1000f_y} (20 \text{ ft}) = 680.2k \quad V_{w-adjusted} = 66.2k + 1.2(0.076f_y)(20 \text{ ft}) = 68.0k \]

Replot 680.2 k-ft vs. 10ft, which lands above the capacity of the W21x83. We can't look up because the chart ends, but we can look for that capacity with a longer unbraced length. This leads us to a W24 x 84 as the most economical. (With the additional self weight of 84 - 76 lb/ft = 8 lb/ft, the increase in the factored moment is only 1.92 k-ft; therefore, it is still OK.)

Evaluate the shear capacity:

\[\phi V_w = \phi 0.6\frac{F_y}{f_y}A_w = 1.0(0.6)(50 \text{ksi})(24.10 m)0.47m = 338.4k \quad \text{so yes, } 68k \leq 338.4k \quad \text{OK} \]

Evaluate the deflection with respect to the limits of L/240 for live (unfactored) load and L/180 for total (unfactored) load:

\[\Delta_{total} = \frac{Pb^2(3I - b)}{6EI} + \frac{3k(10 \text{ ft})^2(3\cdot20 - 10 \text{ ft})(12\frac{L}{E})}{6(30 x 10^6 \text{ ksi})2370 \text{ in}^3} + \frac{(2.209\frac{f_y}{f_y})(20 \text{ ft})^3(12\frac{w}{f_y})}{24(30 x 10^6 \text{ ksi})2370 \text{ in}^3} = 0.06 + 0.36 = 0.42 \text{in} \]

So, \(\Delta_{all} \leq \Delta_{all-lim}\) and \(\Delta_{total} \leq \Delta_{total-lim}\): \(0.06 \text{ in.} \leq 1 \text{ in.} \) and \(0.42 \text{ in.} \leq 1.33 \text{ in.}\)

(This section is so big to accommodate the large bending moment at the cantilever support that it deflects very little.)

\[\therefore \text{FINAL SELECTION IS W24x84} \]
Example 6
Select the most economical joist for the 40 ft grid structure with floors and a flat roof. The roof loads are 10 lb/ft2 dead load and 20 lb/ft2 live load. The floor loads are 30 lb/ft2 dead load 100 lb/ft2 live load. (Live load deflection limit for the roof is L/240, while the floor is L/360). Use the (LRFD) K and LH series charts provided.

![Diagram of joist selection process](image-url)

(Top values are maximum total factored load in lb/ft, while the lower (lighter) values are maximum (unfactored) live load for a deflection of L/360)

<table>
<thead>
<tr>
<th>Joint Designation</th>
<th>16K3</th>
<th>16K4</th>
<th>16K5</th>
<th>16K7</th>
<th>18K7</th>
<th>18K10</th>
<th>20K3</th>
<th>20K4</th>
<th>20K5</th>
<th>20K7</th>
<th>20K9</th>
<th>20K10</th>
<th>22K4</th>
<th>22K5</th>
<th>22K7</th>
<th>22K9</th>
<th>22K10</th>
<th>22K11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (in.)</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Approx. Wt. (lbs/ft)</td>
<td>6.6</td>
<td>7.2</td>
<td>7.7</td>
<td>8.5</td>
<td>9.1</td>
<td>10.2</td>
<td>11.7</td>
</tr>
<tr>
<td>Span (ft.)</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>211</td>
<td>255</td>
<td>286</td>
<td>312</td>
<td>348</td>
<td>418</td>
<td>496</td>
<td>280</td>
<td>316</td>
<td>345</td>
<td>384</td>
<td>462</td>
<td>462</td>
<td>462</td>
<td>462</td>
<td>462</td>
<td>462</td>
<td>462</td>
</tr>
<tr>
<td>39</td>
<td>241</td>
<td>271</td>
<td>297</td>
<td>330</td>
<td>390</td>
<td>471</td>
<td>547</td>
<td>267</td>
<td>300</td>
<td>327</td>
<td>364</td>
<td>436</td>
<td>436</td>
<td>436</td>
<td>436</td>
<td>436</td>
<td>436</td>
<td>436</td>
</tr>
<tr>
<td>40</td>
<td>229</td>
<td>258</td>
<td>282</td>
<td>313</td>
<td>376</td>
<td>447</td>
<td>523</td>
<td>255</td>
<td>285</td>
<td>310</td>
<td>346</td>
<td>417</td>
<td>417</td>
<td>417</td>
<td>417</td>
<td>417</td>
<td>417</td>
<td>417</td>
</tr>
<tr>
<td>41</td>
<td>241</td>
<td>271</td>
<td>296</td>
<td>330</td>
<td>390</td>
<td>471</td>
<td>547</td>
<td>265</td>
<td>300</td>
<td>327</td>
<td>364</td>
<td>436</td>
<td>436</td>
<td>436</td>
<td>436</td>
<td>436</td>
<td>436</td>
<td>436</td>
</tr>
</tbody>
</table>

Shaded areas indicate the bridging requirements.
Example 6 (continued)

Shaded areas indicate the bridging requirements.

STANDARD LOAD TABLE FOR LONGSPAN STEEL JOISTS, LH-SERIES

Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf)

<table>
<thead>
<tr>
<th>Joist Designation</th>
<th>Approx. Wt in Lbs/Per Linear Ft (Joists only)</th>
<th>Depth in Inches</th>
<th>SAFE LOAD* in Lbs. Between</th>
<th>CLEAR SPAN IN FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>20LH42</td>
<td>10 20</td>
<td>16950</td>
<td>663 656 646 615 582 547 516 487 460 436 412 393 373 355 337 322</td>
<td></td>
</tr>
<tr>
<td>20LH43</td>
<td>11 20</td>
<td>18000</td>
<td>703 694 687 678 651 621 592 558 528 499 474 448 424 403 382 364</td>
<td></td>
</tr>
<tr>
<td>20LH44</td>
<td>12 20</td>
<td>22050</td>
<td>924 915 903 882 850 816 789 769 747 722 696 667 641 616 593 566 541</td>
<td></td>
</tr>
<tr>
<td>20LH45</td>
<td>14 20</td>
<td>23700</td>
<td>1233 1186 1144 1084 1018 952 904 840 790 745 703 666 631 598 568 541</td>
<td></td>
</tr>
<tr>
<td>20LH46</td>
<td>16 20</td>
<td>31630</td>
<td>606 591 572 547 527 498 478 468 460 428 416 395 375 355 335 319 307 293</td>
<td></td>
</tr>
<tr>
<td>20LH47</td>
<td>17 20</td>
<td>33750</td>
<td>1317 1297 1271 1179 1140 1096 1050 1000 940 895 834 789 745 706 670 633 600 571 541</td>
<td></td>
</tr>
<tr>
<td>20LH48</td>
<td>19 20</td>
<td>34800</td>
<td>869 819 575 536 520 489 468 426 385 355 335 309 285 262 242 225 209</td>
<td></td>
</tr>
<tr>
<td>20LH49</td>
<td>21 20</td>
<td>38100</td>
<td>1485 1409 1377 1329 1294 1242 1203 1167 1132 1098 1059 1004 954 904 858 815 775</td>
<td></td>
</tr>
<tr>
<td>20LH50</td>
<td>23 20</td>
<td>41100</td>
<td>1692 1542 1498 1434 1386 1341 1297 1258 1211 1166 1122 1069 1009 954 906 862</td>
<td></td>
</tr>
</tbody>
</table>

(Top values are maximum total factored load in lb/ft, while the lower (lighter) values are maximum (unfactored) live load for a deflection of L/360)

Shaded areas indicate the bridging requirements.
Example 7 (LRFD)

EXAMPLE 5.1 Open-Web Steel Joist Design

A fully exposed roof system for a commercial building, spanning 35 ft, located in Muncie, Indiana, in an urban environment.

IBC specifies a 20 psf snow live load for Muncie, Indiana, home of Ball State University. Table 13 indicates the snow exposure factor: $C_e = 0.9$. Table 1.4 indicates the snow thermal factor: $C_t = 1.0$. Table 1.7 indicates an occupancy importance factor (for Category II): $I_o = 1.0$. Fig. 1.2 indicates the ground snow load: $p_g = 20$ psf

\[P_s = 0.7(0.9)1.0(1.0)20 \text{ psf} = 13.9 \text{ psf} \]

A typical roof construction might consist of:

- Membrane roofing: 1.0 psf
- 4 in. average tapered rigid insulation: 6.0 psf
- Steel deck (2-4 ft span): 1.0 psf

Estimated joist weight:

- 35 ft span would be a minimum 18 in. joist
- An average 18 in. joist weight = 9.0 plf
- Spaced @ 4 ft-0 in. o.c.: 9.0 plf/4 ft = 2.3 psf
- Ceiling suspension system: 1.0 psf
- 1/2 in. gypsum ceiling: 2.0 psf

Mechanical system estimates should also be included; the heavy sprinkler/drain piping running parallel to a joist or pair of joists is especially critical.

- Miscellaneous ductwork/electrical: 1.0 psf
- Total dead load = 14.3 psf x 4 ft o.c. = 57.2 plf
- Total live load = 13.9 psf x 4 ft o.c. = 55.6 plf
- Total factored live snow load + dead load = 1.2(55.6) + 1.6(57.2) = 158.2 plf

Use joist load tables to select the best section:

- At 35 ft, 18K3 joists carry 237 plf TFL and 84 plf LL
- LL: deflection controls and the weight is 6.4 plf.

At least on the surface, this is the best choice, but depending upon the need to integrate mechanical systems into the joist space, a 20K3 at 6.5 plf or even a 22K4 at 7.3 plf which is both deeper and heavier than the previous selection may be best:

STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES

Based On A 50 ksi Maximum Yield Strength - Loads Shown In Pounds Per Linear Foot (plf)

<table>
<thead>
<tr>
<th>Joist Designation</th>
<th>18K3</th>
<th>18K4</th>
<th>18K5</th>
<th>18K6</th>
<th>18K7</th>
<th>18K8</th>
<th>18K10</th>
<th>20K3</th>
<th>20K4</th>
<th>20K5</th>
<th>20K6</th>
<th>20K7</th>
<th>20K8</th>
<th>20K10</th>
<th>22K4</th>
<th>22K5</th>
<th>22K6</th>
<th>22K7</th>
<th>22K8</th>
<th>22K10</th>
<th>22K11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (in.)</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Approx. Wt. (lbs/ft)</td>
<td>6.4</td>
<td>7.2</td>
<td>7.7</td>
<td>8.4</td>
<td>8.9</td>
<td>10.1</td>
<td>11.6</td>
<td>6.5</td>
<td>7.2</td>
<td>7.7</td>
<td>8.4</td>
<td>8.9</td>
<td>10.1</td>
<td>11.6</td>
<td>7.3</td>
<td>7.7</td>
<td>8.5</td>
<td>9.0</td>
<td>10.2</td>
<td>11.7</td>
<td>11.9</td>
</tr>
<tr>
<td>Span (ft)</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

Joist Designation	237	285	321	349	396	468	555	264	318	358	391	435	523	621	522	579	579	687	774		
Depth (in.)	18	18	18	18	18	18	18	20	20	20	20	20	20	20	22	22	22	22	22	22	22
Approx. Wt. (lbs/ft)	84	98	110	120	122	166	184	106	122	137	149	155	195	229	149	167	182	202	229	289	
Span (ft)	36	36	36	36	36	36	36	38	38	38	38	38	38	38	38	38	38	38	38	38	38
Example 8
A floor with multiple bays is to be supported by open-web steel joists spaced at 3 ft. on center and spanning 30 ft. having a dead load of 70 lb/ft² and a live load of 100 lb/ft². The joists are supported on joist girders spanning 30 ft. with 3 ft.-long panel points (shown). Determine the member forces at the location shown in a horizontal chord and the maximum force in a web member for an interior girder. Use factored loads. Assume a self weight for the open-web joists of 12 lb/ft, and the self weight for the joist girder of 35 lb/ft.
Example 9

A floor is to be supported by trusses spaced at 5 ft. on center and spanning 60 ft. having a dead load of 53 lb/ft2 and a live load of 100 lb/ft2. With 3 ft.-long panel points, the depth is assumed to be 3 ft with a span-to-depth ratio of 20. With 6 ft.-long panel points, the depth is assumed to be 6 ft with a span-to-depth ratio of 10. Determine the maximum force in a horizontal chord and the maximum force in a web member. Use factored loads. Assume a self weight of 40 lb/ft.

Table 7.2 Computation of Truss Joint Loads

<table>
<thead>
<tr>
<th>Truss</th>
<th>Node- Area loads</th>
<th>tributary widths</th>
<th>Floor Area</th>
<th>Factored</th>
<th>Factored</th>
<th>Factored</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#/ft2</td>
<td>(K/ft2)</td>
<td>(K/ft2)</td>
<td>Node-</td>
<td>(ft)</td>
<td>(K)</td>
</tr>
<tr>
<td></td>
<td>#/ft2</td>
<td>(K/ft2)</td>
<td>(K/ft2)</td>
<td>Node-</td>
<td>(ft)</td>
<td>(K)</td>
</tr>
<tr>
<td>3 ft deep</td>
<td>53</td>
<td>0.053</td>
<td>100</td>
<td>0.100</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>6 ft deep</td>
<td>53</td>
<td>0.053</td>
<td>100</td>
<td>0.100</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

NOTE – end panels only have half the tributary width of interior panels.

FBD 1 for 3 ft deep truss

FBD 2 of cut just to the left of midspan

FBD 3 of cut just to right of left support

FBD 4 for 6 ft deep truss

FBD 5 of cut just to the left of midspan

FBD 6 of cut just to right of left support

FBD 5 Maximum web force will be in the end diagonal

\[\sum F_y = 0 \]

FBD 6 Maximum web force will be in the end diagonal

\[\sum F_y = 0 \]

Example 9

A floor is to be supported by trusses spaced at 5 ft. on center and spanning 60 ft. having a dead load of 53 lb/ft2 and a live load of 100 lb/ft2. With 3 ft.-long panel points, the depth is assumed to be 3 ft with a span-to-depth ratio of 20. With 6 ft.-long panel points, the depth is assumed to be 6 ft with a span-to-depth ratio of 10. Determine the maximum force in a horizontal chord and the maximum force in a web member. Use factored loads. Assume a self weight of 40 lb/ft.

Table 7.2 Computation of Truss Joint Loads

<table>
<thead>
<tr>
<th>Truss</th>
<th>Node- Area loads</th>
<th>tributary widths</th>
<th>Floor Area</th>
<th>Factored</th>
<th>Factored</th>
<th>Factored</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#/ft2</td>
<td>(K/ft2)</td>
<td>(K/ft2)</td>
<td>Node-</td>
<td>(ft)</td>
<td>(K)</td>
</tr>
<tr>
<td></td>
<td>#/ft2</td>
<td>(K/ft2)</td>
<td>(K/ft2)</td>
<td>Node-</td>
<td>(ft)</td>
<td>(K)</td>
</tr>
<tr>
<td>3 ft deep</td>
<td>53</td>
<td>0.053</td>
<td>100</td>
<td>0.100</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>6 ft deep</td>
<td>53</td>
<td>0.053</td>
<td>100</td>
<td>0.100</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

NOTE – end panels only have half the tributary width of interior panels.

FBD 1 for 3 ft deep truss

FBD 2 of cut just to the left of midspan

FBD 3 of cut just to right of left support

FBD 4 for 6 ft deep truss

FBD 5 of cut just to the left of midspan

FBD 6 of cut just to right of left support

FBD 5 Maximum web force will be in the end diagonal

\[\sum F_y = 0 \]

FBD 6 Maximum web force will be in the end diagonal

\[\sum F_y = 0 \]
Example 10 (pg 367) + LRFD
Example Problem 10.10 (Figure 10.41)

A 24-ft.-tall, A572 grade 50, steel column (W14×82) with an $F_y = 50$ ksi has pins at both ends. Its weak axis is braced at midheight, but the column is free to buckle the full 24 ft. in the strong direction. Determine the safe load capacity for this column, using ASD and LRFD.

Example 11 (pg 371) + chart method
Example Problem 10.14: Design of Steel Columns (Figure 10.48)

Select the most economical W12 × column 18' in height to support an axial load of 600 kips using A572 grade 50 steel. Assume that the column is hinged at the top but fixed at the base. Use LRFD assuming that the load is a dead load (factor of 1.4)

ALSO: Select the W12 column using the Available Strength charts.
Example 12

Given:
Redesign the column from Example E.1a assuming the column is laterally braced about the y-y axis and torsionally braced at the midpoint. Use both ASD and LRFD. \(F_y = 50 \text{ ksi} \). (Not using Available Strength charts)

Solution:

ASD:
1. \(P_a = 140 \text{ kips} + 420 \text{ kips} = 560 \text{ kips} \)

2. The effective length in the weak (y-y) axis is 15 ft, while the effective length in the strong (x-x) axis is 30 ft. (K = 1, KL = 1×30 ft).

To find \(\frac{KL}{r_y} \) and \(\frac{KL}{r_x} \), we can assume or choose values from the wide flange charts. \(r_y \)'s range from 1 to 3 in., while \(r_x \)'s range from 3 to 14 inches. Let's try \(r_y = 2 \) in and \(r_x = 9 \) in. (something in the W21 range, say.)

\[
\frac{KL}{r_y} \approx \frac{15 \text{ ft}(12 \text{ in/ft})}{2 \text{ in.}} = 90 \Rightarrow \text{GOVERNS (is larger)}
\]

\[
\frac{KL}{r_x} \approx \frac{30 \text{ ft}(12 \text{ in/ft})}{9 \text{ in.}} = 40
\]

3. Find a section with sufficient area (which then will give us “real” values for \(r_y \) and \(r_x \)):

If \(P_a \leq \phi P_n \Omega \), and \(P_n = F_{cr} A \), we can find \(A \geq \frac{P_a \Omega}{F_{cr}} \) with \(\Omega = 1.67 \)

The tables provided have \(\phi F_{cr} \), so we can get \(F_{cr} \) by dividing by \(\phi = 0.9 \)

\(\phi F_{cr} \) for 90 is 24.9 ksi, \(F_{cr} = 24.9 \text{ ksi}/0.9 = 27.67 \text{ ksi} \) so \(A \geq 560 \text{ kips}/27.67 \text{ ksi} = 33.8 \text{ in}^2 \)

4. Choose a trial section, and find the effective lengths and associated available strength, \(F_{cr} \):

Looking from the smallest sections, the W14’s are the first with a big enough area:

Try a W14 x 120 (\(A = 35.3 \text{ in}^2 \)) with \(r_y = 3.74 \text{ in} \) and \(r_x = 6.24 \text{ in.} \):

\[
\frac{KL}{r_y} = 48.1 \text{ and } \frac{KL}{r_x} = 57.7 \text{ (GOVERNS)}
\]

\(\phi F_{cr} \) for 58 is 35.2 ksi, \(F_{cr} = 39.1 \text{ ksi} \) so \(A \geq 560 \text{ kips}/39.1 \text{ ksi} = 23.9 \text{ in}^2 \)

Choose a W14 x 90. (Choosing a W14 x 82 would make \(\frac{KL}{r_x} = 59.5 \), and \(A_{req} = 24.3 \text{ in}^2 \), which is more than 24.1 in²!)

LRFD:
1. \(P_u = 1.2(140 \text{ kips}) + 1.6(420 \text{ kips}) = 840 \text{ kips} \)

2. The effective length in the weak (y-y) axis is 15 ft, while the effective length in the strong (x-x) axis is 30 ft. (K = 1, KL = 1×30 ft).

To find \(\frac{KL}{r_y} \) and \(\frac{KL}{r_x} \), we can assume or choose values from the wide flange charts. \(r_y \)'s range from 1 to 3 in., while \(r_x \)'s range from 3 to 14 inches. Let's try \(r_y = 2 \) in and \(r_x = 9 \) in. (something in the W21 range, say.)

\[
\frac{KL}{r_y} \approx \frac{15 \text{ ft}(12 \text{ in/ft})}{2 \text{ in.}} = 90 \Rightarrow \text{GOVERNS (is larger)}
\]

\[
\frac{KL}{r_x} \approx \frac{30 \text{ ft}(12 \text{ in/ft})}{9 \text{ in.}} = 40
\]

3. Find a section with sufficient area (which then will give us “real” values for \(r_y \) and \(r_x \)):

If \(P_u \leq \phi P_n \), and \(P_n = F_{cr} A \), we can find \(A \geq \frac{P_u}{\phi F_{cr}} \) with \(\phi = 0.9 \)

\(\phi F_{cr} \) for 90 is 24.9 ksi, \(F_{cr} = 24.9 \text{ ksi}/0.9 = 27.67 \text{ ksi} \) so \(A \geq 840 \text{ kips}/27.67 \text{ ksi} = 30.3 \text{ in}^2 \)

4. Choose a trial section, and find the effective lengths and associated available strength, \(F_{cr} \):

Looking from the smallest sections, the W14’s are the first with a big enough area:

Try a W14 x 120 (\(A = 35.3 \text{ in}^2 \)) with \(r_y = 3.74 \text{ in} \) and \(r_x = 6.24 \text{ in.} \):

\[
\frac{KL}{r_y} = 48.1 \text{ and } \frac{KL}{r_x} = 57.7 \text{ (GOVERNS)}
\]

\(\phi F_{cr} \) for 58 is 35.2 ksi, \(F_{cr} = 39.1 \text{ ksi} \) so \(A \geq 840 \text{ kips}/39.1 \text{ ksi} = 23.9 \text{ in}^2 \)

Choose a W14 x 90. (Choosing a W14 x 82 would make \(\frac{KL}{r_x} = 59.5 \), and \(A_{req} = 24.3 \text{ in}^2 \), which is more than 24.1 in²!)
Example 13

For the building frame shown in Fig. 6-20, determine the effective column length factor, K, the slenderness ratio, KL/r for each column. Assume the columns buckle and the beams bend about their strong axis.

![Building frame diagram](image)

Figure 6-20: Building frame for Example 6-1.

Solution:

Note: The diagonal bracing prevents sideways of the first story columns only.

\[
\begin{align*}
G_A &= 1.0 \text{ (fixed support)} \\
G_B &= 10.0 \text{ (pinned support)} \\
G_D &= \frac{285}{448} = 0.63 \\
G_E &= \frac{285}{448} + \frac{204}{20} = 0.87 \\
G_F &= \frac{285}{340} + \frac{204}{18} = 1.91 \\
G_G &= \frac{204}{340} = 0.90 \\
G_H &= \frac{204}{340} = 0.90
\end{align*}
\]

<table>
<thead>
<tr>
<th>Column</th>
<th>G_{top}</th>
<th>G_{bot}</th>
<th>K</th>
<th>KL/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>0.85</td>
<td>1.0</td>
<td>0.76</td>
<td>0.76(15)(12)/5.25 = 26.1</td>
</tr>
<tr>
<td>BE</td>
<td>0.87</td>
<td>10.0</td>
<td>0.85</td>
<td>0.85(15)(12)/5.25 = 29.1</td>
</tr>
<tr>
<td>CF</td>
<td>1.91</td>
<td>10.0</td>
<td>0.90</td>
<td>0.90(15)(12)/5.25 = 30.9</td>
</tr>
<tr>
<td>EG</td>
<td>0.90</td>
<td>0.87</td>
<td>1.29</td>
<td>1.29(12)(12)/5.17 = 35.9</td>
</tr>
<tr>
<td>FH</td>
<td>0.90</td>
<td>1.91</td>
<td>1.43</td>
<td>1.43(12)(12)/5.17 = 39.8</td>
</tr>
</tbody>
</table>

Table 6-1: Column effective length factors and slenderness ratios for Example 6-1.
Example 14
Investigate the acceptability of a W16 x 67 used as a beam-column under the unfactored loading shown in the figure. It is A992 steel ($F_Y = 50$ ksi). Assume 25% of the load is dead load with 75% live load.

SOLUTION:
DESIGN LOADS (shown on figure):
Axial load = 1.2(0.25)(350k)+1.6(0.75)(350k)=525k
Moment at joint = 1.2(0.25)(60 ft) + 1.6(0.75)(60 ft) = 90 k-ft
Determine column capacity and fraction to choose the appropriate interaction equation:

\[
\frac{kL}{r} = \frac{15 \text{ ft}(12 \text{ in})}{6.96 \text{ in}} = 25.9 \quad \text{and} \quad \frac{kL}{r} = \frac{15 \text{ ft}(12 \text{ in})}{2.46 \text{ in}} = 73
\]
(governs)

\[
P_c = \phi_c P_n = \phi_c F_y A_g = (30.5 \text{ ksi})(19.7 \text{ in}^2) = 600.85k
\]

\[
\frac{P}{P_c} = \frac{525k}{600.85k} = 0.87 > 0.2 \quad \text{so use} \quad \frac{P}{\phi_c P_n} + 8 \left(\frac{M_x}{\phi_x M_{nx}} + \frac{M_y}{\phi_y M_{ny}} \right) \leq 1.0
\]

There is no bending about the y axis, so that term will not have any values.

Determine the bending moment capacity in the x direction:
The unbraced length to use the full plastic moment (L_p) is listed as 8.69 ft, and we are over that so we don’t want to determine it from formula, we can find the beam in the Available Moment vs. Unbraced Length tables. The value of ϕM_u at $L_p = 15$ ft is 422 k-ft.

Determine the magnification factor when $M_1 = 0$, $M_2 = 90$ k-ft:

\[
C_m = 0.6 - 0.4 \frac{M_2}{M_z} = 0.6 - \frac{90}{90} = 0.6 \leq 1.0
\]

\[
P_c = \frac{\pi^2 EA}{(Kl/r)^2} = \frac{\pi^2 (30 \times 10^3 \text{ ksi})(19.7 \text{ in}^2)}{(25.9)^2} = 8695.4k
\]

\[
B_1 = \frac{C_m}{1 - (P_2/P_c)} = \frac{0.6}{1 - (525k/8695.4k)} = 0.64 \geq 1.0 \quad \text{USE} \quad 1.0 \quad M_u = (1)90 \text{ k-ft}
\]

Finally, determine the interaction value:

\[
\frac{P}{\phi_c P_n} + 8 \left(\frac{M_x}{\phi_x M_{nx}} + \frac{M_y}{\phi_y M_{ny}} \right) = 0.87 + 8 \left(\frac{90}{422} \right) = 1.06 \leq 1.0
\]

This is NOT OK. (and outside error tolerance). The section should be larger.

Example 15
10.9 Determine the maximum load carrying capacity of this lap joint, assuming A36 steel with E60XX electrodes.
Example 16

10.7 Determine the capacity of the connection in Figure 10.44 assuming A36 steel with E70XX electrodes.

Solution:

Capacity of weld:

For a 3/16" fillet weld, \(\phi_S = 6.96 \text{ k/in} \)

Weld length = 8 in + 6 in + 8 in = 22 in.

Weld capacity = 22" \times 6.96 \text{ k/in} = 153.1 \text{ k}

Capacity of plate:

\[\phi P_n = \phi F_y A_g \phi = 0.9 \]

Plate capacity = 0.9 \times 36 \text{ k/in}^2 \times 3/8" \times 6" = 72.9 \text{ k}

\[\therefore \text{ Plate capacity governs, } P_{\text{allow}} = 72.9 \text{ k} \]

The weld size used is obviously too strong. What size, then, can the weld be reduced to so that the weld strength is more compatible to the plate capacity? To make the weld capacity = plate capacity:

\[22" \times (\text{weld capacity per in.}) = 72.9 \text{ k} \]

Weld capacity per inch = \(\frac{72.9 \text{ k}}{22 \text{ in.}} \)

From Available Strength table, use 3/16" weld \((\phi S = 4.18 \text{ k/in.}) \)

Minimum size fillet = 3/16" based on a 3/8" thick plate.

Example 17

10.5 Using the AISC framed beam connection bolt shear in Table 7-1, determine the shear adequacy of the connection shown in Figure 10.28. What thickness and angle length are required? Also determine the bearing capacity of the wide flange sections.

Factored end beam reaction = 90 k.

\[F_u = 65 \text{ ksi} \]

Figure 10.28 Typical beam-column connection.
Example 18

10.2 The butt splice shown in Figure 10.22 uses two 8 x 3/8" plates to “sandwich” in the 8 x 1/2" plates being joined. Four 3/8" A325-SC bolts are used on both sides of the splice. Assuming A36 steel and standard round holes, determine the allowable capacity of the connection.

SOLUTION:
Shear, bearing and net tension will be checked to determine the critical conditions that governs the capacity of the connection.

Shear: Using the AISC available shear in Table 7-3 (Group A):
\[\phi R_n = 26.4 \text{k/bolt} \times 4 \text{ bolts} = 105.6 \text{k} \]

Bearing: Using the AISC available bearing in Table 7-4:
There are 4 bolts bearing on the center (1/2") plate, while there are 4 bolts bearing on a total width of two sandwich plates (3/4" total). The thinner bearing width will govern.
Assume 3 in. spacing (center to center) of bolts. For A36 steel, \(F_u = 58 \text{ ksi} \).
\[\phi R_n = 91.4 \text{k/bolt/in.} \times 0.5 \text{ in.} \times 4 \text{ bolts} = 182.8 \text{k} \] (Table 7-4)

With the edge distance of 2 in., the bearing capacity might be smaller from Table 7-5 which says the distance should be 2 1/4 in for full bearing (and we have 2 in.).
\[\phi R_n = 79.9 \text{k/bolt/in.} \times 0.5 \text{ in.} \times 4 \text{ bolts} = 159.8 \text{k} \]

Tension: The center plate is critical, again, because its thickness is less than the combined thicknesses of the two outer plates. We must consider tension yielding and tension rupture:
\[\phi R_n = \phi F_y A_g \quad \text{and} \quad \phi R_n = \phi F_u A_e \quad \text{where} \ A_e = A_{net} U \]

\[A_g = 8 \text{ in.} \times \frac{1}{2} \text{ in.} = 4 \text{ in}^2 \]
The holes are considered 1/8 in. larger than the bolt hole diameter = (7/8 + 1/8) = 1.0 in.

\[A_o = (8 \text{ in.} - 2 \text{ holes} \times 1.0 \text{ in.}) \times \frac{1}{2} \text{ in.} = 3.0 \text{ in}^2 \]
The whole cross section sees tension, so the shear lag factor \(U = 1 \)
\[\phi F_y A_g = 0.9 \times 36 \text{ ksi} \times 4 \text{ in}^2 = 129.6 \text{k} \]
\[\phi F_u A_e = 0.75 \times 58 \text{ ksi} \times (1) \times 3.0 \text{ in}^2 = 130.5 \text{k} \]

The maximum connection capacity (smallest value) so far is governed by bolt shear:
\[\phi R_n = 105.6 \text{k} \]

Block Shear Rupture: It is possible for the center plate to rip away from the sandwich plates leaving the block (shown hatched) behind:
\[\phi R_n = \phi (0.6 F_u A_{ov} + U_{oa} F_o A_{oc}) \leq \phi (0.6 F_o A_{ov} + U_{oa} F_o A_{oc}) \]

where \(A_{ow} \) is the area resisting shear, \(A_{ow} \) is the area resisting tension, \(A_{ov} \) is the gross area resisting shear, and \(U_{oa} = 1 \) when the tensile stress is uniform.

\[A_{ov} = 2 \times (4 + 2 \text{ in.}) \times \frac{1}{2} \text{ in.} = 6 \text{ in}^2 \]
\[A_{ow} = A_{ov} - 1 \frac{1}{2} \text{ holes areas} = 6 \text{ in}^2 - 1.5 \times 1 \text{ in.} \times \frac{1}{2} \text{ in.} = 5.25 \text{ in}^2 \]
\[A_{ow} = 3.5 \text{ in.} \times t - 2(\frac{1}{2} \text{ hole areas}) = 3.5 \text{ in.} \times \frac{1}{2} t - 1 \times 1 \text{ in.} \times \frac{1}{2} \text{ in.} = 1.25 \text{ in}^2 \]
\[\phi (0.6 F_o A_{ow} + U_{oa} F_o A_{oc}) = 0.75 \times (0.6 \times 58 \text{ ksi} \times 5.25 \text{ in}^2 + 1 \times 58 \text{ ksi} \times 1.25 \text{ in}^2) = 191.4 \text{k} \]
\[\phi (0.6 F_o A_{ov} + U_{oa} F_o A_{oc}) = 0.75 \times (0.6 \times 36 \text{ ksi} \times 6 \text{ in}^2 + 1 \times 58 \text{ ksi} \times 1.25 \text{ in}^2) = 151.6 \text{k} \]

The maximum connection capacity (smallest value) is governed by block shear rupture:
\[\phi R_n = 151.6 \text{k} \]
Example 19

The steel used in the connection and beams is A992 with \(F_y = 50 \text{ ksi} \), and \(F_u = 65 \text{ ksi} \). Using A490-N bolt material, determine the maximum capacity of the connection based on shear in the bolts, bearing in all materials and pick the number of bolts and angle length (not staggered). Use A36 steel for the angles.

W21x93: \(d = 21.62 \text{ in}, t_w = 0.58 \text{ in}, t_f = 0.93 \text{ in} \)

W10x54: \(t_f = 0.615 \text{ in} \)

SOLUTION:

The maximum length the angles can be depends on how it fits between the top and bottom flange with some clearance allowed for the fillet to the flange, and getting an air wrench in to tighten the bolts. This example uses 1" of clearance:

\[
\text{Available length} = \text{beam depth} - \text{both flange thicknesses} - 1" \text{ clearance at top} & 1" \text{ at bottom}
\]

\[= 21.62 \text{ in} - 2(0.93 \text{ in}) - 2(1 \text{ in}) = 17.76 \text{ in}.\]

With the spaced at 3 in. and 1 ¼ in. end lengths (each end), the maximum number of bolts can be determined:

\[
\text{Available length} \geq 1.25 \text{ in.} + 1.25 \text{ in.} + 3 \text{ in.} \times (\text{number of bolts} - 1)
\]

\[
\text{number of bolts} \leq (17.76 \text{ in} - 2.5 \text{ in.} - (-3 \text{ in.}))/3 \text{ in.} = 6.1, \text{ so 6 bolts.}
\]

It is helpful to have the All-bolted Double-Angle Connection Tables 10-1. They are available for ¾", 7/8", and 1" bolt diameters and list angle thicknesses of ¼", 5/16", 3/8", and ½". Increasing the angle thickness is likely to increase the angle strength, although the limit states include shear yielding of the angles, shear rupture of the angles, and block shear rupture of the angles.

For these diameters, the available shear (double) from Table 7-1 for 6 bolts is (6)45.1 k/bolt = 270.6 kips, (6)61.3 k/bolt = 367.8 kips, and (6)80.1 k/bolt = 480.6 kips.

Tables 10-1 (not all provided here) list a bolt and angle available strength of 271 kips for the ¾" bolts, 296 kips for the 7/8" bolts, and 281 kips for the 1" bolts. It appears that increasing the bolt diameter to 1" will not gain additional load. Use 7/8" bolts.

\[\phi R_n = 367.8 \text{ kips for double shear of 7/8" bolts} \quad \phi R_n = 296 \text{ kips for limit state in angles}\]

We also need to evaluate bearing of bolts on the beam web, and column flange where there are bolt holes. Table 7-4 provides available bearing strength for the material type, bolt diameter, hole type, and spacing per inch of material thicknesses.

a) Bearing for beam web: There are 6 bolt holes through the beam web. This is typically the critical bearing limit value because there are two angle legs that resist bolt bearing and twice as many bolt holes to the column. The material is A992 (\(F_u = 65 \text{ ksi} \)), 0.58" thick, with 7/8" bolt diameters at 3 in. spacing.

\[\phi R_n = 6 \text{ bolts}(102 \text{ k/bolt/inch})(0.58 \text{ in}) = 355.0 \text{ kips}\]

b) Bearing for column flange: There are 12 bolt holes through the column. The material is A992 (\(F_u = 65 \text{ ksi} \)), 0.615" thick, with 1" bolt diameters.

\[\phi R_n = 12 \text{ bolts}(102 \text{ k/bolt/inch})(0.615 \text{ in}) = 752.8 \text{ kips}\]

Although, the bearing in the beam web is the smallest at 355 kips, with the shear on the bolts even smaller at 324.6 kips, **the maximum capacity for the simple-shear connector is 296 kips**, limited by the critical capacity of the angles.
Beam Design Flow Chart

Collect data: L, ω, γ, Δlim, Δact; find beam charts for load cases and Δact chart equations

ASD (Unified)
Allowable Stress or LRFD Design?

LRFD

Collect data: Fy, Fu, and safety factors Ω

Find Vmax & Mmax from constructing diagrams or using beam chart formulas

Find Zreq'd and pick a section from a table with Zx greater or equal to Zreq'd

Determine ωself wt (last number in name) or calculate ωself wt, using A found. Find Mmax-adj & Vmax-adj.

No

Calculate Zreq'd-adj using Mmax-adj
Is Zpicked ≥ Zreq'd-adj?

Yes

Is Vmax-adj ≤ (0.6FywAw)/Ω?

No

pick a new section with a larger web area

Yes

Calculate ∆max (no load factors!) using superpositioning and beam chart equations with the Ix for the section

No

is ∆max ≤ ∆lim?
This may be both the limit for live load deflection and total load deflection.

No

pick a section with a larger Ix

Yes (DONE)

Iadj ≥ ∆adj
Itrial

No
Listing of W Shapes in Descending order of Z_x, for Beam Design

<table>
<thead>
<tr>
<th>Z_x – US (in.3)</th>
<th>I_x – US (in.4)</th>
<th>Section</th>
<th>I_x – SI (106mm.4)</th>
<th>Z_x – SI (106mm.3)</th>
<th>Z_x – US (in.3)</th>
<th>I_x – US (in.4)</th>
<th>Section</th>
<th>I_x – SI (106mm.4)</th>
<th>Z_x – SI (106mm.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>514 7450 W33X141</td>
<td>3100 8420</td>
<td></td>
<td>289 3100</td>
<td>W24X104</td>
<td>1290 4740</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>511 5680 W24X176</td>
<td>2360 8370</td>
<td>287 1900</td>
<td>W14X159</td>
<td>791 4700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509 7800 W36X135</td>
<td>3250 8340</td>
<td>283 3610</td>
<td>W30X90</td>
<td>1500 4640</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 6680 W30X148</td>
<td>2780 8190</td>
<td>280 3000</td>
<td>W24X103</td>
<td>1250 4590</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>490 4330 W18X211</td>
<td>1800 8030</td>
<td>279 2670</td>
<td>W21X111</td>
<td>1110 4570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>487 3400 W14X257</td>
<td>1420 7980</td>
<td>278 3270</td>
<td>W27X94</td>
<td>1360 4560</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>481 3110 W12X279</td>
<td>1290 7880</td>
<td>275 1650</td>
<td>W12X170</td>
<td>687 4510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>476 4730 W21X182</td>
<td>1970 7800</td>
<td>262 2190</td>
<td>W18X119</td>
<td>912 4290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>468 5170 W24X162</td>
<td>2150 7670</td>
<td>260 1710</td>
<td>W14X145</td>
<td>712 4260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>467 6710 W33X130</td>
<td>2790 7650</td>
<td>254 2700</td>
<td>W24X94</td>
<td>1120 4160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>464 5660 W27X146</td>
<td>2360 7600</td>
<td>253 2420</td>
<td>W21X101</td>
<td>1010 4150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>442 3870 W18X192</td>
<td>1610 7240</td>
<td>244 2850</td>
<td>W27X84</td>
<td>1190 4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>437 5770 W30X132</td>
<td>2400 7160</td>
<td>243 1430</td>
<td>W12X152</td>
<td>595 3980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>436 3010 W14X233</td>
<td>1250 7140</td>
<td>234 1530</td>
<td>W14X132</td>
<td>637 3830</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>432 4280 W21X166</td>
<td>1780 7080</td>
<td>230 1910</td>
<td>W18X106</td>
<td>795 3770</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>428 2720 W12X252</td>
<td>1130 7010</td>
<td>224 2370</td>
<td>W24X84</td>
<td>986 3670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>418 4580 W24X146</td>
<td>1910 6850</td>
<td>221 2070</td>
<td>W21X93</td>
<td>862 3620</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>415 5900 W33X118</td>
<td>2460 6800</td>
<td>214 1240</td>
<td>W12X136</td>
<td>516 3510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>408 5360 W30X124</td>
<td>2230 6690</td>
<td>212 1380</td>
<td>W14X120</td>
<td>574 3470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>398 3450 W18X175</td>
<td>1440 6520</td>
<td>211 1750</td>
<td>W18X97</td>
<td>728 3460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395 4760 W27X129</td>
<td>1980 6470</td>
<td>200 2100</td>
<td>W24X76</td>
<td>874 3280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>390 2660 W14X211</td>
<td>1110 6390</td>
<td>198 1490</td>
<td>W16X100</td>
<td>620 3240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>386 2420 W12X230</td>
<td>1010 6330</td>
<td>196 1830</td>
<td>W21X83</td>
<td>762 3210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>378 4930 W30X116</td>
<td>2050 6190</td>
<td>192 1240</td>
<td>W14X109</td>
<td>516 3150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>373 3630 W21X147</td>
<td>1510 6110</td>
<td>186 1530</td>
<td>W18X86</td>
<td>637 3050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370 4020 W24X131</td>
<td>1670 6060</td>
<td>186 1070</td>
<td>W12X120</td>
<td>445 3050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356 3060 W18X158</td>
<td>1270 5830</td>
<td>177 1830</td>
<td>W24X68</td>
<td>762 2900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>355 2400 W14X193</td>
<td>999 5820</td>
<td>175 1300</td>
<td>W16X89</td>
<td>541 2870</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>348 2140 W12X210</td>
<td>891 5700</td>
<td>173 1110</td>
<td>W14X99</td>
<td>462 2830</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>346 4470 W30X108</td>
<td>1860 5670</td>
<td>172 1600</td>
<td>W21X73</td>
<td>666 2820</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>343 4080 W27X114</td>
<td>1700 5620</td>
<td>164 933</td>
<td>W12X106</td>
<td>388 2690</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333 3220 W21X132</td>
<td>1340 5460</td>
<td>163 1330</td>
<td>W18X76</td>
<td>554 2670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>327 3540 W24X117</td>
<td>1470 5360</td>
<td>160 1480</td>
<td>W21X68</td>
<td>616 2620</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>322 2750 W18X143</td>
<td>1140 5280</td>
<td>157 999</td>
<td>W14X90</td>
<td>416 2570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320 2140 W14X176</td>
<td>891 5240</td>
<td>153 1550</td>
<td>W24X62</td>
<td>645 2510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312 3990 W30X99</td>
<td>1660 5110</td>
<td>150 1110</td>
<td>W16X77</td>
<td>462 2460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>311 1890 W12X190</td>
<td>787 5100</td>
<td>147 833</td>
<td>W12X96</td>
<td>347 2410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>307 2960 W21X122</td>
<td>1230 5030</td>
<td>147 716</td>
<td>W10X112</td>
<td>298 2410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305 3620 W27X102</td>
<td>1510 5000</td>
<td>146 1170</td>
<td>W18X71</td>
<td>487 2390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290 2460 W18X130</td>
<td>1020 4750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Listing of W Shapes in Descending order of Z, for Beam Design (Continued)

<table>
<thead>
<tr>
<th>Z_x – US (in.2)</th>
<th>I_x – US (in.4)</th>
<th>Section</th>
<th>I_x – SI (106mm.4)</th>
<th>Z_x – SI (106mm.3)</th>
<th>I_x – US (in.4)</th>
<th>Section</th>
<th>I_x – SI (106mm.4)</th>
<th>Z_x – SI (106mm.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>1330</td>
<td>W21X62</td>
<td>554</td>
<td>2360</td>
<td>66.5</td>
<td>510</td>
<td>W18X35</td>
<td>212</td>
</tr>
<tr>
<td>139</td>
<td>881</td>
<td>W14X82</td>
<td>367</td>
<td>2280</td>
<td>64.2</td>
<td>348</td>
<td>W12X45</td>
<td>145</td>
</tr>
<tr>
<td>134</td>
<td>1350</td>
<td>W24X55</td>
<td>562</td>
<td>2200</td>
<td>64.0</td>
<td>448</td>
<td>W16X36</td>
<td>186</td>
</tr>
<tr>
<td>133</td>
<td>1070</td>
<td>W18X65</td>
<td>445</td>
<td>2180</td>
<td>61.5</td>
<td>385</td>
<td>W14X38</td>
<td>160</td>
</tr>
<tr>
<td>132</td>
<td>740</td>
<td>W12X87</td>
<td>308</td>
<td>2160</td>
<td>60.4</td>
<td>272</td>
<td>W10X49</td>
<td>113</td>
</tr>
<tr>
<td>130</td>
<td>954</td>
<td>W16X67</td>
<td>397</td>
<td>2130</td>
<td>59.8</td>
<td>228</td>
<td>W8X58</td>
<td>94.9</td>
</tr>
<tr>
<td>130</td>
<td>623</td>
<td>W10X100</td>
<td>259</td>
<td>2130</td>
<td>57.0</td>
<td>307</td>
<td>W12X40</td>
<td>128</td>
</tr>
<tr>
<td>129</td>
<td>1170</td>
<td>W21X57</td>
<td>487</td>
<td>2110</td>
<td>54.9</td>
<td>248</td>
<td>W10X45</td>
<td>103</td>
</tr>
<tr>
<td>126</td>
<td>1140</td>
<td>W21X55</td>
<td>475</td>
<td>2060</td>
<td>54.6</td>
<td>340</td>
<td>W14X34</td>
<td>142</td>
</tr>
<tr>
<td>126</td>
<td>795</td>
<td>W14X74</td>
<td>331</td>
<td>2060</td>
<td>54.0</td>
<td>375</td>
<td>W16X31</td>
<td>156</td>
</tr>
<tr>
<td>123</td>
<td>984</td>
<td>W18X60</td>
<td>410</td>
<td>2020</td>
<td>51.2</td>
<td>285</td>
<td>W12X35</td>
<td>119</td>
</tr>
<tr>
<td>119</td>
<td>662</td>
<td>W12X79</td>
<td>276</td>
<td>1950</td>
<td>49.0</td>
<td>184</td>
<td>W8X48</td>
<td>76.6</td>
</tr>
<tr>
<td>115</td>
<td>722</td>
<td>W14X68</td>
<td>301</td>
<td>1880</td>
<td>47.3</td>
<td>291</td>
<td>W14X30</td>
<td>121</td>
</tr>
<tr>
<td>113</td>
<td>534</td>
<td>W10X88</td>
<td>222</td>
<td>1850</td>
<td>46.8</td>
<td>209</td>
<td>W10X39</td>
<td>87.0</td>
</tr>
<tr>
<td>112</td>
<td>890</td>
<td>W18X55</td>
<td>370</td>
<td>1840</td>
<td>44.2</td>
<td>301</td>
<td>W16X26</td>
<td>125</td>
</tr>
<tr>
<td>110</td>
<td>984</td>
<td>W21X50</td>
<td>410</td>
<td>1800</td>
<td>43.1</td>
<td>238</td>
<td>W12X30</td>
<td>99.1</td>
</tr>
<tr>
<td>108</td>
<td>597</td>
<td>W12X72</td>
<td>248</td>
<td>1770</td>
<td>40.2</td>
<td>245</td>
<td>W14X26</td>
<td>102</td>
</tr>
<tr>
<td>107</td>
<td>959</td>
<td>W21X48</td>
<td>399</td>
<td>1750</td>
<td>39.8</td>
<td>146</td>
<td>W8X40</td>
<td>60.8</td>
</tr>
<tr>
<td>105</td>
<td>758</td>
<td>W16X57</td>
<td>316</td>
<td>1720</td>
<td>38.8</td>
<td>171</td>
<td>W10X33</td>
<td>71.2</td>
</tr>
<tr>
<td>102</td>
<td>640</td>
<td>W14X61</td>
<td>266</td>
<td>1670</td>
<td>37.2</td>
<td>204</td>
<td>W12X26</td>
<td>84.9</td>
</tr>
<tr>
<td>101</td>
<td>800</td>
<td>W18X50</td>
<td>333</td>
<td>1660</td>
<td>36.6</td>
<td>170</td>
<td>W10X30</td>
<td>70.8</td>
</tr>
<tr>
<td>97.6</td>
<td>455</td>
<td>W10X77</td>
<td>189</td>
<td>1600</td>
<td>34.7</td>
<td>127</td>
<td>W8X35</td>
<td>52.9</td>
</tr>
<tr>
<td>96.8</td>
<td>533</td>
<td>W12X65</td>
<td>222</td>
<td>1590</td>
<td>33.2</td>
<td>199</td>
<td>W14X22</td>
<td>82.8</td>
</tr>
<tr>
<td>95.4</td>
<td>843</td>
<td>W21X44</td>
<td>351</td>
<td>1560</td>
<td>31.3</td>
<td>144</td>
<td>W10X26</td>
<td>59.9</td>
</tr>
<tr>
<td>92.0</td>
<td>659</td>
<td>W16X50</td>
<td>274</td>
<td>1510</td>
<td>30.4</td>
<td>110</td>
<td>W8X31</td>
<td>45.8</td>
</tr>
<tr>
<td>90.7</td>
<td>712</td>
<td>W18X46</td>
<td>296</td>
<td>1490</td>
<td>29.3</td>
<td>156</td>
<td>W12X22</td>
<td>64.9</td>
</tr>
<tr>
<td>87.1</td>
<td>541</td>
<td>W14X53</td>
<td>225</td>
<td>1430</td>
<td>27.2</td>
<td>98.0</td>
<td>W8X28</td>
<td>40.8</td>
</tr>
<tr>
<td>86.4</td>
<td>475</td>
<td>W12X58</td>
<td>198</td>
<td>1420</td>
<td>26.0</td>
<td>118</td>
<td>W10X22</td>
<td>49.1</td>
</tr>
<tr>
<td>85.3</td>
<td>394</td>
<td>W10X68</td>
<td>164</td>
<td>1400</td>
<td>24.7</td>
<td>130</td>
<td>W12X19</td>
<td>54.1</td>
</tr>
<tr>
<td>82.3</td>
<td>586</td>
<td>W16X45</td>
<td>244</td>
<td>1350</td>
<td>23.1</td>
<td>82.7</td>
<td>W8X24</td>
<td>34.4</td>
</tr>
<tr>
<td>78.4</td>
<td>612</td>
<td>W18X40</td>
<td>255</td>
<td>1280</td>
<td>21.6</td>
<td>96.3</td>
<td>W10X19</td>
<td>40.1</td>
</tr>
<tr>
<td>78.4</td>
<td>484</td>
<td>W14X48</td>
<td>201</td>
<td>1280</td>
<td>20.4</td>
<td>75.3</td>
<td>W8X21</td>
<td>31.3</td>
</tr>
<tr>
<td>77.9</td>
<td>425</td>
<td>W12X53</td>
<td>177</td>
<td>1280</td>
<td>20.1</td>
<td>103</td>
<td>W12X16</td>
<td>42.9</td>
</tr>
<tr>
<td>74.6</td>
<td>341</td>
<td>W10X60</td>
<td>142</td>
<td>1220</td>
<td>18.7</td>
<td>81.9</td>
<td>W10X17</td>
<td>34.1</td>
</tr>
<tr>
<td>73.0</td>
<td>518</td>
<td>W16X40</td>
<td>216</td>
<td>1200</td>
<td>17.4</td>
<td>88.6</td>
<td>W12X14</td>
<td>36.9</td>
</tr>
<tr>
<td>71.9</td>
<td>391</td>
<td>W12X50</td>
<td>163</td>
<td>1180</td>
<td>17.0</td>
<td>61.9</td>
<td>W8X18</td>
<td>25.8</td>
</tr>
<tr>
<td>70.1</td>
<td>272</td>
<td>W8X67</td>
<td>113</td>
<td>1150</td>
<td>16.0</td>
<td>68.9</td>
<td>W10X15</td>
<td>28.7</td>
</tr>
<tr>
<td>69.6</td>
<td>428</td>
<td>W14X43</td>
<td>178</td>
<td>1140</td>
<td>13.6</td>
<td>48.0</td>
<td>W8X15</td>
<td>20.0</td>
</tr>
<tr>
<td>66.6</td>
<td>303</td>
<td>W10X54</td>
<td>126</td>
<td>1090</td>
<td>12.6</td>
<td>53.8</td>
<td>W10X12</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.87</td>
<td>30.8</td>
<td>W8X10</td>
<td>12.8</td>
</tr>
</tbody>
</table>
Available Critical Stress, ϕF_{cr}, for Compression Members, ksi ($F_y = 36$ ksi and $\phi = 0.90$)

<table>
<thead>
<tr>
<th>KL/r</th>
<th>ϕF_{cr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32.4</td>
<td>41</td>
<td>29.7</td>
<td>81</td>
<td>22.9</td>
<td>121</td>
<td>15.0</td>
<td>161</td>
<td>8.72</td>
</tr>
<tr>
<td>2</td>
<td>32.4</td>
<td>42</td>
<td>29.5</td>
<td>82</td>
<td>22.7</td>
<td>122</td>
<td>14.8</td>
<td>162</td>
<td>8.61</td>
</tr>
<tr>
<td>3</td>
<td>32.4</td>
<td>43</td>
<td>29.4</td>
<td>83</td>
<td>22.5</td>
<td>123</td>
<td>14.6</td>
<td>163</td>
<td>8.50</td>
</tr>
<tr>
<td>4</td>
<td>32.4</td>
<td>44</td>
<td>29.3</td>
<td>84</td>
<td>22.3</td>
<td>124</td>
<td>14.4</td>
<td>164</td>
<td>8.40</td>
</tr>
<tr>
<td>5</td>
<td>32.4</td>
<td>45</td>
<td>29.1</td>
<td>85</td>
<td>22.1</td>
<td>125</td>
<td>14.2</td>
<td>165</td>
<td>8.30</td>
</tr>
<tr>
<td>6</td>
<td>32.3</td>
<td>46</td>
<td>29.0</td>
<td>86</td>
<td>22.0</td>
<td>126</td>
<td>14.0</td>
<td>166</td>
<td>8.20</td>
</tr>
<tr>
<td>7</td>
<td>32.3</td>
<td>47</td>
<td>28.8</td>
<td>87</td>
<td>21.8</td>
<td>127</td>
<td>13.9</td>
<td>167</td>
<td>8.10</td>
</tr>
<tr>
<td>8</td>
<td>32.3</td>
<td>48</td>
<td>28.7</td>
<td>88</td>
<td>21.6</td>
<td>128</td>
<td>13.7</td>
<td>168</td>
<td>8.00</td>
</tr>
<tr>
<td>9</td>
<td>32.3</td>
<td>49</td>
<td>28.6</td>
<td>89</td>
<td>21.4</td>
<td>129</td>
<td>13.5</td>
<td>169</td>
<td>7.91</td>
</tr>
<tr>
<td>10</td>
<td>32.2</td>
<td>50</td>
<td>28.4</td>
<td>90</td>
<td>21.2</td>
<td>130</td>
<td>13.3</td>
<td>170</td>
<td>7.82</td>
</tr>
<tr>
<td>11</td>
<td>32.2</td>
<td>51</td>
<td>28.3</td>
<td>91</td>
<td>21.0</td>
<td>131</td>
<td>13.1</td>
<td>171</td>
<td>7.73</td>
</tr>
<tr>
<td>12</td>
<td>32.2</td>
<td>52</td>
<td>28.1</td>
<td>92</td>
<td>20.8</td>
<td>132</td>
<td>12.9</td>
<td>172</td>
<td>7.64</td>
</tr>
<tr>
<td>13</td>
<td>32.1</td>
<td>53</td>
<td>27.9</td>
<td>93</td>
<td>20.5</td>
<td>133</td>
<td>12.8</td>
<td>173</td>
<td>7.55</td>
</tr>
<tr>
<td>14</td>
<td>32.1</td>
<td>54</td>
<td>27.8</td>
<td>94</td>
<td>20.3</td>
<td>134</td>
<td>12.6</td>
<td>174</td>
<td>7.46</td>
</tr>
<tr>
<td>15</td>
<td>32.0</td>
<td>55</td>
<td>27.6</td>
<td>95</td>
<td>20.1</td>
<td>135</td>
<td>12.4</td>
<td>175</td>
<td>7.38</td>
</tr>
<tr>
<td>16</td>
<td>32.0</td>
<td>56</td>
<td>27.5</td>
<td>96</td>
<td>19.9</td>
<td>136</td>
<td>12.2</td>
<td>176</td>
<td>7.29</td>
</tr>
<tr>
<td>17</td>
<td>31.9</td>
<td>57</td>
<td>27.3</td>
<td>97</td>
<td>19.7</td>
<td>137</td>
<td>12.0</td>
<td>177</td>
<td>7.21</td>
</tr>
<tr>
<td>18</td>
<td>31.9</td>
<td>58</td>
<td>27.1</td>
<td>98</td>
<td>19.5</td>
<td>138</td>
<td>11.9</td>
<td>178</td>
<td>7.13</td>
</tr>
<tr>
<td>19</td>
<td>31.8</td>
<td>59</td>
<td>27.0</td>
<td>99</td>
<td>19.3</td>
<td>139</td>
<td>11.7</td>
<td>179</td>
<td>7.05</td>
</tr>
<tr>
<td>20</td>
<td>31.7</td>
<td>60</td>
<td>26.8</td>
<td>100</td>
<td>19.1</td>
<td>140</td>
<td>11.5</td>
<td>180</td>
<td>6.97</td>
</tr>
<tr>
<td>21</td>
<td>31.7</td>
<td>61</td>
<td>26.6</td>
<td>101</td>
<td>18.9</td>
<td>141</td>
<td>11.4</td>
<td>181</td>
<td>6.90</td>
</tr>
<tr>
<td>22</td>
<td>31.6</td>
<td>62</td>
<td>26.5</td>
<td>102</td>
<td>18.7</td>
<td>142</td>
<td>11.2</td>
<td>182</td>
<td>6.82</td>
</tr>
<tr>
<td>23</td>
<td>31.5</td>
<td>63</td>
<td>26.3</td>
<td>103</td>
<td>18.5</td>
<td>143</td>
<td>11.0</td>
<td>183</td>
<td>6.75</td>
</tr>
<tr>
<td>24</td>
<td>31.4</td>
<td>64</td>
<td>26.1</td>
<td>104</td>
<td>18.3</td>
<td>144</td>
<td>10.9</td>
<td>184</td>
<td>6.67</td>
</tr>
<tr>
<td>25</td>
<td>31.4</td>
<td>65</td>
<td>25.9</td>
<td>105</td>
<td>18.1</td>
<td>145</td>
<td>10.7</td>
<td>185</td>
<td>6.60</td>
</tr>
<tr>
<td>26</td>
<td>31.3</td>
<td>66</td>
<td>25.8</td>
<td>106</td>
<td>17.9</td>
<td>146</td>
<td>10.6</td>
<td>186</td>
<td>6.53</td>
</tr>
<tr>
<td>27</td>
<td>31.2</td>
<td>67</td>
<td>25.6</td>
<td>107</td>
<td>17.7</td>
<td>147</td>
<td>10.5</td>
<td>187</td>
<td>6.46</td>
</tr>
<tr>
<td>28</td>
<td>31.1</td>
<td>68</td>
<td>25.4</td>
<td>108</td>
<td>17.5</td>
<td>148</td>
<td>10.3</td>
<td>188</td>
<td>6.39</td>
</tr>
<tr>
<td>29</td>
<td>31.0</td>
<td>69</td>
<td>25.2</td>
<td>109</td>
<td>17.3</td>
<td>149</td>
<td>10.2</td>
<td>189</td>
<td>6.32</td>
</tr>
<tr>
<td>30</td>
<td>30.9</td>
<td>70</td>
<td>25.0</td>
<td>110</td>
<td>17.1</td>
<td>150</td>
<td>10.0</td>
<td>190</td>
<td>6.26</td>
</tr>
<tr>
<td>31</td>
<td>30.8</td>
<td>71</td>
<td>24.8</td>
<td>111</td>
<td>16.9</td>
<td>151</td>
<td>9.91</td>
<td>191</td>
<td>6.19</td>
</tr>
<tr>
<td>32</td>
<td>30.7</td>
<td>72</td>
<td>24.7</td>
<td>112</td>
<td>16.7</td>
<td>152</td>
<td>9.78</td>
<td>192</td>
<td>6.13</td>
</tr>
<tr>
<td>33</td>
<td>30.6</td>
<td>73</td>
<td>24.5</td>
<td>113</td>
<td>16.5</td>
<td>153</td>
<td>9.65</td>
<td>193</td>
<td>6.06</td>
</tr>
<tr>
<td>34</td>
<td>30.5</td>
<td>74</td>
<td>24.3</td>
<td>114</td>
<td>16.3</td>
<td>154</td>
<td>9.53</td>
<td>194</td>
<td>6.00</td>
</tr>
<tr>
<td>35</td>
<td>30.4</td>
<td>75</td>
<td>24.1</td>
<td>115</td>
<td>16.2</td>
<td>155</td>
<td>9.40</td>
<td>195</td>
<td>5.94</td>
</tr>
<tr>
<td>36</td>
<td>30.3</td>
<td>76</td>
<td>23.9</td>
<td>116</td>
<td>16.0</td>
<td>156</td>
<td>9.28</td>
<td>196</td>
<td>5.88</td>
</tr>
<tr>
<td>37</td>
<td>30.1</td>
<td>77</td>
<td>23.7</td>
<td>117</td>
<td>15.8</td>
<td>157</td>
<td>9.17</td>
<td>197</td>
<td>5.82</td>
</tr>
<tr>
<td>38</td>
<td>30.0</td>
<td>78</td>
<td>23.5</td>
<td>118</td>
<td>15.6</td>
<td>158</td>
<td>9.05</td>
<td>198</td>
<td>5.76</td>
</tr>
<tr>
<td>39</td>
<td>29.9</td>
<td>79</td>
<td>23.3</td>
<td>119</td>
<td>15.4</td>
<td>159</td>
<td>8.94</td>
<td>199</td>
<td>5.70</td>
</tr>
<tr>
<td>40</td>
<td>29.8</td>
<td>80</td>
<td>23.1</td>
<td>120</td>
<td>15.2</td>
<td>160</td>
<td>8.82</td>
<td>200</td>
<td>5.65</td>
</tr>
</tbody>
</table>
Available Critical Stress, $\phi_c F_{cr}$, for Compression Members, ksi ($F_y = 50$ ksi and $\phi = 0.90$)

<table>
<thead>
<tr>
<th>KL/r</th>
<th>$\phi_c F_{cr}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.0</td>
<td>41</td>
<td>39.8</td>
<td>81</td>
<td>27.9</td>
<td>121</td>
<td>15.4</td>
<td>161</td>
<td>8.72</td>
</tr>
<tr>
<td>2</td>
<td>45.0</td>
<td>42</td>
<td>39.6</td>
<td>82</td>
<td>27.5</td>
<td>122</td>
<td>15.2</td>
<td>162</td>
<td>8.61</td>
</tr>
<tr>
<td>3</td>
<td>45.0</td>
<td>43</td>
<td>39.3</td>
<td>83</td>
<td>27.2</td>
<td>123</td>
<td>14.9</td>
<td>163</td>
<td>8.50</td>
</tr>
<tr>
<td>4</td>
<td>44.9</td>
<td>44</td>
<td>39.1</td>
<td>84</td>
<td>26.9</td>
<td>124</td>
<td>14.7</td>
<td>164</td>
<td>8.40</td>
</tr>
<tr>
<td>5</td>
<td>44.9</td>
<td>45</td>
<td>38.8</td>
<td>85</td>
<td>26.5</td>
<td>125</td>
<td>14.5</td>
<td>165</td>
<td>8.30</td>
</tr>
<tr>
<td>6</td>
<td>44.9</td>
<td>46</td>
<td>38.5</td>
<td>86</td>
<td>26.2</td>
<td>126</td>
<td>14.2</td>
<td>166</td>
<td>8.20</td>
</tr>
<tr>
<td>7</td>
<td>44.8</td>
<td>47</td>
<td>38.3</td>
<td>87</td>
<td>25.9</td>
<td>127</td>
<td>14.0</td>
<td>167</td>
<td>8.10</td>
</tr>
<tr>
<td>8</td>
<td>44.8</td>
<td>48</td>
<td>38.0</td>
<td>88</td>
<td>25.5</td>
<td>128</td>
<td>13.8</td>
<td>168</td>
<td>8.00</td>
</tr>
<tr>
<td>9</td>
<td>44.7</td>
<td>49</td>
<td>37.8</td>
<td>89</td>
<td>25.2</td>
<td>129</td>
<td>13.6</td>
<td>169</td>
<td>7.91</td>
</tr>
<tr>
<td>10</td>
<td>44.7</td>
<td>50</td>
<td>37.5</td>
<td>90</td>
<td>24.9</td>
<td>130</td>
<td>13.4</td>
<td>170</td>
<td>7.82</td>
</tr>
<tr>
<td>11</td>
<td>44.6</td>
<td>51</td>
<td>37.2</td>
<td>91</td>
<td>24.6</td>
<td>131</td>
<td>13.2</td>
<td>171</td>
<td>7.73</td>
</tr>
<tr>
<td>12</td>
<td>44.5</td>
<td>52</td>
<td>36.9</td>
<td>92</td>
<td>24.2</td>
<td>132</td>
<td>13.0</td>
<td>172</td>
<td>7.64</td>
</tr>
<tr>
<td>13</td>
<td>44.4</td>
<td>53</td>
<td>36.6</td>
<td>93</td>
<td>23.9</td>
<td>133</td>
<td>12.8</td>
<td>173</td>
<td>7.55</td>
</tr>
<tr>
<td>14</td>
<td>44.4</td>
<td>54</td>
<td>36.4</td>
<td>94</td>
<td>23.6</td>
<td>134</td>
<td>12.6</td>
<td>174</td>
<td>7.46</td>
</tr>
<tr>
<td>15</td>
<td>44.3</td>
<td>55</td>
<td>36.1</td>
<td>95</td>
<td>23.3</td>
<td>135</td>
<td>12.4</td>
<td>175</td>
<td>7.38</td>
</tr>
<tr>
<td>16</td>
<td>44.2</td>
<td>56</td>
<td>35.8</td>
<td>96</td>
<td>22.9</td>
<td>136</td>
<td>12.2</td>
<td>176</td>
<td>7.29</td>
</tr>
<tr>
<td>17</td>
<td>44.1</td>
<td>57</td>
<td>35.5</td>
<td>97</td>
<td>22.6</td>
<td>137</td>
<td>12.0</td>
<td>177</td>
<td>7.21</td>
</tr>
<tr>
<td>18</td>
<td>43.9</td>
<td>58</td>
<td>35.2</td>
<td>98</td>
<td>22.3</td>
<td>138</td>
<td>11.9</td>
<td>178</td>
<td>7.13</td>
</tr>
<tr>
<td>19</td>
<td>43.8</td>
<td>59</td>
<td>34.9</td>
<td>99</td>
<td>22.0</td>
<td>139</td>
<td>11.7</td>
<td>179</td>
<td>7.05</td>
</tr>
<tr>
<td>20</td>
<td>43.7</td>
<td>60</td>
<td>34.6</td>
<td>100</td>
<td>21.7</td>
<td>140</td>
<td>11.5</td>
<td>180</td>
<td>6.97</td>
</tr>
<tr>
<td>21</td>
<td>43.6</td>
<td>61</td>
<td>34.3</td>
<td>101</td>
<td>21.3</td>
<td>141</td>
<td>11.4</td>
<td>181</td>
<td>6.90</td>
</tr>
<tr>
<td>22</td>
<td>43.4</td>
<td>62</td>
<td>34.0</td>
<td>102</td>
<td>21.0</td>
<td>142</td>
<td>11.2</td>
<td>182</td>
<td>6.82</td>
</tr>
<tr>
<td>23</td>
<td>43.3</td>
<td>63</td>
<td>33.7</td>
<td>103</td>
<td>20.7</td>
<td>143</td>
<td>11.0</td>
<td>183</td>
<td>6.75</td>
</tr>
<tr>
<td>24</td>
<td>43.1</td>
<td>64</td>
<td>33.4</td>
<td>104</td>
<td>20.4</td>
<td>144</td>
<td>10.9</td>
<td>184</td>
<td>6.67</td>
</tr>
<tr>
<td>25</td>
<td>43.0</td>
<td>65</td>
<td>33.0</td>
<td>105</td>
<td>20.1</td>
<td>145</td>
<td>10.7</td>
<td>185</td>
<td>6.60</td>
</tr>
<tr>
<td>26</td>
<td>42.8</td>
<td>66</td>
<td>32.7</td>
<td>106</td>
<td>19.8</td>
<td>146</td>
<td>10.6</td>
<td>186</td>
<td>6.53</td>
</tr>
<tr>
<td>27</td>
<td>42.7</td>
<td>67</td>
<td>32.4</td>
<td>107</td>
<td>19.5</td>
<td>147</td>
<td>10.5</td>
<td>187</td>
<td>6.46</td>
</tr>
<tr>
<td>28</td>
<td>42.5</td>
<td>68</td>
<td>32.1</td>
<td>108</td>
<td>19.2</td>
<td>148</td>
<td>10.3</td>
<td>188</td>
<td>6.39</td>
</tr>
<tr>
<td>29</td>
<td>42.3</td>
<td>69</td>
<td>31.8</td>
<td>109</td>
<td>18.9</td>
<td>149</td>
<td>10.2</td>
<td>189</td>
<td>6.32</td>
</tr>
<tr>
<td>30</td>
<td>42.1</td>
<td>70</td>
<td>31.4</td>
<td>110</td>
<td>18.6</td>
<td>150</td>
<td>10.0</td>
<td>190</td>
<td>6.26</td>
</tr>
<tr>
<td>31</td>
<td>41.9</td>
<td>71</td>
<td>31.1</td>
<td>111</td>
<td>18.3</td>
<td>151</td>
<td>9.91</td>
<td>191</td>
<td>6.19</td>
</tr>
<tr>
<td>32</td>
<td>41.8</td>
<td>72</td>
<td>30.8</td>
<td>112</td>
<td>18.0</td>
<td>152</td>
<td>9.78</td>
<td>192</td>
<td>6.13</td>
</tr>
<tr>
<td>33</td>
<td>41.6</td>
<td>73</td>
<td>30.5</td>
<td>113</td>
<td>17.7</td>
<td>153</td>
<td>9.65</td>
<td>193</td>
<td>6.06</td>
</tr>
<tr>
<td>34</td>
<td>41.4</td>
<td>74</td>
<td>30.2</td>
<td>114</td>
<td>17.4</td>
<td>154</td>
<td>9.53</td>
<td>194</td>
<td>6.00</td>
</tr>
<tr>
<td>35</td>
<td>41.1</td>
<td>75</td>
<td>29.8</td>
<td>115</td>
<td>17.1</td>
<td>155</td>
<td>9.40</td>
<td>195</td>
<td>5.94</td>
</tr>
<tr>
<td>36</td>
<td>40.9</td>
<td>76</td>
<td>29.5</td>
<td>116</td>
<td>16.8</td>
<td>156</td>
<td>9.28</td>
<td>196</td>
<td>5.88</td>
</tr>
<tr>
<td>37</td>
<td>40.7</td>
<td>77</td>
<td>29.2</td>
<td>117</td>
<td>16.5</td>
<td>157</td>
<td>9.17</td>
<td>197</td>
<td>5.82</td>
</tr>
<tr>
<td>38</td>
<td>40.5</td>
<td>78</td>
<td>28.8</td>
<td>118</td>
<td>16.2</td>
<td>158</td>
<td>9.05</td>
<td>198</td>
<td>5.76</td>
</tr>
<tr>
<td>39</td>
<td>40.3</td>
<td>79</td>
<td>28.5</td>
<td>119</td>
<td>16.0</td>
<td>159</td>
<td>8.94</td>
<td>199</td>
<td>5.70</td>
</tr>
<tr>
<td>40</td>
<td>40.0</td>
<td>80</td>
<td>28.2</td>
<td>120</td>
<td>15.7</td>
<td>160</td>
<td>8.82</td>
<td>200</td>
<td>5.65</td>
</tr>
</tbody>
</table>
Bolt Strength Tables

Table 7-1

Available Shear Strength of Bolts, kips

<table>
<thead>
<tr>
<th>Nominal Bolt Diameter, d, in.</th>
<th>(\frac{3}{16})</th>
<th>(\frac{1}{4})</th>
<th>(\frac{3}{8})</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Bolt Area, in.(^2)</td>
<td>0.307</td>
<td>0.442</td>
<td>0.691</td>
<td>0.785</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASTM Design.</th>
<th>Thread Cond.</th>
<th>(F_{ \text{pmin} }) (ksi)</th>
<th>(F_{ \text{pmax} }) (ksi)</th>
<th>Loading</th>
<th>(f_{ \text{pa} })</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
</tr>
<tr>
<td>Group A</td>
<td>N</td>
<td>27.0</td>
<td>40.5</td>
<td>S</td>
<td>8.29</td>
<td>12.4</td>
<td>11.9</td>
<td>17.9</td>
<td>16.2</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>16.6</td>
<td>24.9</td>
<td>23.9</td>
<td>35.8</td>
<td>32.5</td>
<td>46.7</td>
<td>42.4</td>
<td>63.6</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>34.0</td>
<td>51.0</td>
<td>S</td>
<td>10.4</td>
<td>15.7</td>
<td>15.0</td>
<td>22.5</td>
<td>20.4</td>
<td>30.7</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>20.9</td>
<td>31.3</td>
<td>30.1</td>
<td>45.1</td>
<td>40.9</td>
<td>61.3</td>
<td>53.4</td>
<td>80.1</td>
<td></td>
</tr>
<tr>
<td>Group B</td>
<td>N</td>
<td>34.0</td>
<td>51.0</td>
<td>S</td>
<td>10.4</td>
<td>15.7</td>
<td>15.0</td>
<td>22.5</td>
<td>20.4</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>20.9</td>
<td>31.3</td>
<td>30.1</td>
<td>45.1</td>
<td>40.9</td>
<td>61.3</td>
<td>53.4</td>
<td>80.1</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>42.0</td>
<td>63.0</td>
<td>S</td>
<td>12.9</td>
<td>19.3</td>
<td>18.6</td>
<td>27.6</td>
<td>25.2</td>
<td>37.9</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>25.8</td>
<td>39.7</td>
<td>37.1</td>
<td>55.7</td>
<td>50.5</td>
<td>75.7</td>
<td>65.9</td>
<td>98.9</td>
<td></td>
</tr>
<tr>
<td>A307</td>
<td>–</td>
<td>13.5</td>
<td>20.3</td>
<td>S</td>
<td>4.14</td>
<td>6.23</td>
<td>5.97</td>
<td>8.67</td>
<td>8.11</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>8.29</td>
<td>12.5</td>
<td>11.9</td>
<td>17.9</td>
<td>16.2</td>
<td>24.4</td>
<td>21.2</td>
<td>31.9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal Bolt Diameter, d, in.</th>
<th>(\frac{1}{4})</th>
<th>(\frac{3}{8})</th>
<th>(\frac{1}{2})</th>
<th>(\frac{3}{4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Bolt Area, in.(^2)</td>
<td>0.994</td>
<td>1.23</td>
<td>1.48</td>
<td>1.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASTM Design.</th>
<th>Thread Cond.</th>
<th>(F_{ \text{pmin} }) (ksi)</th>
<th>(F_{ \text{pmax} }) (ksi)</th>
<th>Loading</th>
<th>(f_{ \text{pa} })</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
</tr>
<tr>
<td>Group A</td>
<td>N</td>
<td>27.0</td>
<td>40.5</td>
<td>S</td>
<td>26.8</td>
<td>40.3</td>
<td>33.2</td>
<td>49.8</td>
<td>40.0</td>
<td>59.9</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>26.8</td>
<td>40.3</td>
<td>33.2</td>
<td>49.8</td>
<td>40.0</td>
<td>59.9</td>
<td>47.8</td>
<td>71.7</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>34.0</td>
<td>51.0</td>
<td>S</td>
<td>33.8</td>
<td>50.7</td>
<td>41.8</td>
<td>62.7</td>
<td>50.3</td>
<td>75.5</td>
<td>60.2</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>67.6</td>
<td>101</td>
<td>83.6</td>
<td>125</td>
<td>101</td>
<td>151</td>
<td>120</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Group B</td>
<td>N</td>
<td>34.0</td>
<td>51.0</td>
<td>S</td>
<td>33.8</td>
<td>50.7</td>
<td>41.8</td>
<td>62.7</td>
<td>50.3</td>
<td>75.5</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>67.6</td>
<td>101</td>
<td>83.6</td>
<td>125</td>
<td>101</td>
<td>151</td>
<td>120</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>42.0</td>
<td>63.0</td>
<td>S</td>
<td>41.7</td>
<td>62.6</td>
<td>51.7</td>
<td>77.5</td>
<td>62.2</td>
<td>93.2</td>
<td>74.3</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>83.5</td>
<td>125</td>
<td>103</td>
<td>155</td>
<td>124</td>
<td>186</td>
<td>148</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>A307</td>
<td>–</td>
<td>13.5</td>
<td>20.3</td>
<td>S</td>
<td>13.4</td>
<td>20.2</td>
<td>16.6</td>
<td>25.0</td>
<td>20.0</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>26.8</td>
<td>40.4</td>
<td>33.2</td>
<td>49.9</td>
<td>40.0</td>
<td>60.1</td>
<td>47.8</td>
<td>71.9</td>
<td></td>
</tr>
</tbody>
</table>

ASD LRFD For end loaded connections greater than 38 in., see ASD Specification Table J3.2 footnote b.

\(\Omega = 2.00 \) \(\phi = 0.75 \)

Table 7-2

Available Tensile Strength of Bolts, kips

<table>
<thead>
<tr>
<th>Nominal Bolt Diameter, d, in.</th>
<th>(\frac{3}{16})</th>
<th>(\frac{1}{4})</th>
<th>(\frac{3}{8})</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Bolt Area, in.(^2)</td>
<td>0.307</td>
<td>0.442</td>
<td>0.691</td>
<td>0.785</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASTM Design.</th>
<th>Thread Cond.</th>
<th>(F_{ \text{pmin} }) (ksi)</th>
<th>(F_{ \text{pmax} }) (ksi)</th>
<th>Loading</th>
<th>(f_{ \text{pa} })</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
</tr>
<tr>
<td>Group A</td>
<td>45.0</td>
<td>67.5</td>
<td>13.8</td>
<td>20.7</td>
<td>19.9</td>
<td>29.8</td>
<td>27.1</td>
<td>40.6</td>
<td>35.3</td>
<td>53.0</td>
</tr>
<tr>
<td>Group B</td>
<td>56.5</td>
<td>84.8</td>
<td>17.3</td>
<td>26.0</td>
<td>25.0</td>
<td>37.4</td>
<td>34.0</td>
<td>51.0</td>
<td>44.4</td>
<td>66.6</td>
</tr>
<tr>
<td>A307</td>
<td>22.5</td>
<td>33.8</td>
<td>6.90</td>
<td>10.4</td>
<td>9.94</td>
<td>14.9</td>
<td>13.6</td>
<td>20.3</td>
<td>17.7</td>
<td>26.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal Bolt Diameter, d, in.</th>
<th>(\frac{1}{2})</th>
<th>(\frac{3}{4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Bolt Area, in.(^2)</td>
<td>0.994</td>
<td>1.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASTM Design.</th>
<th>Thread Cond.</th>
<th>(F_{ \text{pmin} }) (ksi)</th>
<th>(F_{ \text{pmax} }) (ksi)</th>
<th>Loading</th>
<th>(f_{ \text{pa} })</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
</tr>
<tr>
<td>Group A</td>
<td>45.0</td>
<td>67.5</td>
<td>44.7</td>
<td>67.1</td>
<td>55.3</td>
<td>82.8</td>
<td>66.8</td>
<td>100</td>
<td>79.5</td>
<td>119</td>
</tr>
<tr>
<td>Group B</td>
<td>56.5</td>
<td>84.8</td>
<td>56.2</td>
<td>84.2</td>
<td>69.3</td>
<td>104</td>
<td>83.9</td>
<td>126</td>
<td>99.8</td>
<td>150</td>
</tr>
<tr>
<td>A307</td>
<td>22.5</td>
<td>33.8</td>
<td>22.4</td>
<td>33.5</td>
<td>27.6</td>
<td>41.4</td>
<td>33.4</td>
<td>50.1</td>
<td>39.8</td>
<td>59.6</td>
</tr>
</tbody>
</table>

ASD LRFD

\(\Omega = 2.00 \) \(\phi = 0.75 \)
Group A Bolts

Available Critical Connections (Class A Faying Surface, $\mu = 0.30$)

<table>
<thead>
<tr>
<th>Hole Type</th>
<th>Loading</th>
<th>Nominal Diameter, d, in.</th>
<th>f_{2a}</th>
<th>f_{2d}</th>
<th>f_{2g}</th>
<th>f_{2h}</th>
<th>f_{2k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hole Type</td>
<td>Loading</td>
<td>Nominal Diameter, d, in.</td>
<td>f_{2a}</td>
<td>f_{2d}</td>
<td>f_{2g}</td>
<td>f_{2h}</td>
<td>f_{2k}</td>
</tr>
<tr>
<td>Minimum Group A Bolt Pretension, kips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>28</td>
<td>39</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
</tr>
<tr>
<td>STD/SSLT</td>
<td>S</td>
<td>4.20</td>
<td>6.44</td>
<td>6.33</td>
<td>9.49</td>
<td>8.81</td>
<td>13.2</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>D</td>
<td>8.59</td>
<td>12.9</td>
<td>12.7</td>
<td>19.0</td>
<td>17.6</td>
<td>26.4</td>
</tr>
<tr>
<td>LSL</td>
<td>S</td>
<td>3.66</td>
<td>5.47</td>
<td>5.39</td>
<td>8.07</td>
<td>7.51</td>
<td>11.2</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>D</td>
<td>7.32</td>
<td>10.9</td>
<td>10.8</td>
<td>16.1</td>
<td>15.0</td>
<td>22.0</td>
</tr>
<tr>
<td>LSL</td>
<td>S</td>
<td>3.01</td>
<td>4.51</td>
<td>4.44</td>
<td>6.64</td>
<td>6.18</td>
<td>9.25</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>D</td>
<td>6.02</td>
<td>9.02</td>
<td>8.87</td>
<td>13.9</td>
<td>12.4</td>
<td>18.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole Type</th>
<th>Loading</th>
<th>Nominal Diameter, d, in.</th>
<th>f_{2a}</th>
<th>f_{2d}</th>
<th>f_{2g}</th>
<th>f_{2h}</th>
<th>f_{2k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Group A Bolt Pretension, kips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>71</td>
<td>85</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
</tr>
<tr>
<td>STD/SSLT</td>
<td>S</td>
<td>12.7</td>
<td>19.0</td>
<td>16.0</td>
<td>24.1</td>
<td>19.2</td>
<td>28.6</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>D</td>
<td>25.3</td>
<td>38.0</td>
<td>32.1</td>
<td>48.1</td>
<td>38.4</td>
<td>57.6</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>S</td>
<td>10.8</td>
<td>16.1</td>
<td>13.7</td>
<td>20.5</td>
<td>16.4</td>
<td>24.5</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>D</td>
<td>21.6</td>
<td>32.3</td>
<td>27.4</td>
<td>40.9</td>
<td>32.7</td>
<td>49.0</td>
</tr>
<tr>
<td>LSL</td>
<td>S</td>
<td>8.87</td>
<td>13.3</td>
<td>11.2</td>
<td>16.8</td>
<td>13.5</td>
<td>20.2</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>D</td>
<td>17.7</td>
<td>26.5</td>
<td>22.5</td>
<td>33.7</td>
<td>26.9</td>
<td>40.3</td>
</tr>
</tbody>
</table>

STD = Standard hole
OVS = Oversized hole
SSLT = Short-slotted hole transverse to the line of force
SSLP = Short-slotted hole parallel to the line of force
LSL = Long-slotted hole transverse or parallel to the line of force

$\Omega = 1.50$
$\phi = 1.00$
$\psi = 0.85$
$\Omega = 2.14$
$\phi = 0.70$

Group B Bolts

Available Critical Connections, kips (Class A Faying Surface, $\mu = 0.30$)

<table>
<thead>
<tr>
<th>Hole Type</th>
<th>Loading</th>
<th>Nominal Diameter, d, in.</th>
<th>f_{2a}</th>
<th>f_{2d}</th>
<th>f_{2g}</th>
<th>f_{2h}</th>
<th>f_{2k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hole Type</td>
<td>Loading</td>
<td>Nominal Diameter, d, in.</td>
<td>f_{2a}</td>
<td>f_{2d}</td>
<td>f_{2g}</td>
<td>f_{2h}</td>
<td>f_{2k}</td>
</tr>
<tr>
<td>Minimum Group B Bolt Pretension, kips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>28</td>
<td>39</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
</tr>
<tr>
<td>STD/SSLT</td>
<td>S</td>
<td>5.42</td>
<td>8.14</td>
<td>7.41</td>
<td>11.2</td>
<td>10.9</td>
<td>17.6</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>D</td>
<td>10.5</td>
<td>16.3</td>
<td>15.8</td>
<td>23.7</td>
<td>22.1</td>
<td>33.2</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>S</td>
<td>3.62</td>
<td>6.02</td>
<td>6.74</td>
<td>10.1</td>
<td>9.44</td>
<td>14.1</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>D</td>
<td>9.25</td>
<td>13.8</td>
<td>13.5</td>
<td>20.2</td>
<td>18.9</td>
<td>28.2</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>S</td>
<td>3.80</td>
<td>5.70</td>
<td>5.44</td>
<td>8.31</td>
<td>7.76</td>
<td>11.6</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>D</td>
<td>7.60</td>
<td>11.4</td>
<td>11.1</td>
<td>16.6</td>
<td>15.5</td>
<td>23.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole Type</th>
<th>Loading</th>
<th>Nominal Diameter, d, in.</th>
<th>f_{2a}</th>
<th>f_{2d}</th>
<th>f_{2g}</th>
<th>f_{2h}</th>
<th>f_{2k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Group B Bolt Pretension, kips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>71</td>
<td>85</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
</tr>
<tr>
<td>STD/SSLT</td>
<td>S</td>
<td>12.3</td>
<td>19.0</td>
<td>16.0</td>
<td>24.1</td>
<td>19.2</td>
<td>28.6</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>D</td>
<td>25.3</td>
<td>38.0</td>
<td>32.1</td>
<td>48.1</td>
<td>38.4</td>
<td>57.6</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>S</td>
<td>10.8</td>
<td>16.1</td>
<td>13.7</td>
<td>20.5</td>
<td>16.4</td>
<td>24.5</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>D</td>
<td>21.6</td>
<td>32.3</td>
<td>27.4</td>
<td>40.9</td>
<td>32.7</td>
<td>49.0</td>
</tr>
<tr>
<td>LSL</td>
<td>S</td>
<td>8.87</td>
<td>13.3</td>
<td>11.2</td>
<td>16.8</td>
<td>13.5</td>
<td>20.2</td>
</tr>
<tr>
<td>OVS/SSLP</td>
<td>D</td>
<td>17.7</td>
<td>26.5</td>
<td>22.5</td>
<td>33.7</td>
<td>26.9</td>
<td>40.3</td>
</tr>
</tbody>
</table>

STD = Standard hole
OVS = Oversized hole
SSLT = Short-slotted hole transverse to the line of force
SSLP = Short-slotted hole parallel to the line of force
LSL = Long-slotted hole transverse or parallel to the line of force

$\Omega = 1.50$
$\phi = 1.00$
$\psi = 0.85$
$\Omega = 2.14$
$\phi = 0.70$

Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute leads in the fillers.

See ABC Specification Sections J3.8 and J5 for provisions when fillers are present.

For Class B faying surfaces, multiply the tabulated available strength by 1.67.
Table 7-4
Available Bearing Strength at Bolt Holes Based on Bolt Spacing
kip/in. thickness

<table>
<thead>
<tr>
<th>Hole Type</th>
<th>Bolt Spacing, s, in.</th>
<th>F_{sb} kip</th>
<th>T_{f} kip/in.</th>
<th>T_{s} kip/in.</th>
<th>$T_{3/16}$ kip/in.</th>
<th>$T_{1/8}$ kip/in.</th>
<th>$T_{1/4}$ kip/in.</th>
<th>1 kip/in.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2(\frac{1}{2}) d_o</td>
<td>58 65</td>
<td>38.2 57.3 66.9</td>
<td>48.6 61.7 72.8</td>
<td>55.8 66.1 77.3</td>
<td>62.6 70.3 82.0</td>
<td>73.6 82.4 93.6</td>
<td>59.2 69.5 80.8</td>
</tr>
<tr>
<td>STD SSLT</td>
<td>3 in.</td>
<td>58 65</td>
<td>43.5 52.8 62.1</td>
<td>57.0 69.6 81.2</td>
<td>65.6 77.8 89.9</td>
<td>76.4 87.8 100</td>
<td>84.8 95.5 111</td>
<td></td>
</tr>
<tr>
<td>SSLP</td>
<td>2(\frac{1}{2}) d_o</td>
<td>58 65</td>
<td>39.3 51.3 62.3</td>
<td>54.1 67.0 79.0</td>
<td>63.3 76.0 89.6</td>
<td>74.4 87.1 104</td>
<td>85.5 97.4 118</td>
<td></td>
</tr>
<tr>
<td>OVS</td>
<td>2(\frac{1}{2}) d_o</td>
<td>58 65</td>
<td>36.3 44.6 55.8</td>
<td>52.2 67.5 82.2</td>
<td>63.0 78.0 95.5</td>
<td>74.7 89.0 114</td>
<td>87.0 102 127</td>
<td></td>
</tr>
<tr>
<td>STD SSLT</td>
<td>3 in.</td>
<td>58 65</td>
<td>38.8 51.1 62.2</td>
<td>54.8 69.0 81.8</td>
<td>64.6 77.8 91.0</td>
<td>75.3 88.0 105</td>
<td>85.5 98.5 118</td>
<td></td>
</tr>
<tr>
<td>SSLP</td>
<td>2(\frac{1}{2}) d_o</td>
<td>58 65</td>
<td>39.3 51.3 62.3</td>
<td>54.1 67.0 79.0</td>
<td>63.3 76.0 89.6</td>
<td>74.4 87.1 104</td>
<td>85.5 97.4 118</td>
<td></td>
</tr>
<tr>
<td>OVS</td>
<td>2(\frac{1}{2}) d_o</td>
<td>58 65</td>
<td>36.3 44.6 55.8</td>
<td>52.2 67.5 82.2</td>
<td>63.0 78.0 95.5</td>
<td>74.7 89.0 114</td>
<td>87.0 102 127</td>
<td></td>
</tr>
</tbody>
</table>

Table 7-4 (continued)
Available Bearing Strength at Bolt Holes Based on Bolt Spacing
kip/in. thickness

<table>
<thead>
<tr>
<th>Hole Type</th>
<th>Bolt Spacing, s, in.</th>
<th>F_{sb} kip</th>
<th>T_{f} kip/in.</th>
<th>T_{s} kip/in.</th>
<th>$T_{3/16}$ kip/in.</th>
<th>$T_{1/8}$ kip/in.</th>
<th>$T_{1/4}$ kip/in.</th>
<th>1 kip/in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD SSLT</td>
<td>3 in.</td>
<td>58 65</td>
<td>61.3 74.6 87.9</td>
<td>76.4 88.4 101</td>
<td>89.4 92.1 107</td>
<td>96.1 101 121</td>
<td>106 114 130</td>
<td>116 127</td>
</tr>
<tr>
<td>SSLP</td>
<td>2(\frac{1}{2}) d_o</td>
<td>58 65</td>
<td>60.9 74.2 87.6</td>
<td>76.4 88.4 101</td>
<td>89.4 92.1 107</td>
<td>96.1 101 121</td>
<td>106 114 130</td>
<td>116 127</td>
</tr>
<tr>
<td>OVS</td>
<td>2(\frac{1}{2}) d_o</td>
<td>58 65</td>
<td>60.9 74.2 87.6</td>
<td>76.4 88.4 101</td>
<td>89.4 92.1 107</td>
<td>96.1 101 121</td>
<td>106 114 130</td>
<td>116 127</td>
</tr>
<tr>
<td>STD SSLT</td>
<td>3 in.</td>
<td>58 65</td>
<td>61.3 74.6 87.9</td>
<td>76.4 88.4 101</td>
<td>89.4 92.1 107</td>
<td>96.1 101 121</td>
<td>106 114 130</td>
<td>116 127</td>
</tr>
<tr>
<td>SSLP</td>
<td>2(\frac{1}{2}) d_o</td>
<td>58 65</td>
<td>60.9 74.2 87.6</td>
<td>76.4 88.4 101</td>
<td>89.4 92.1 107</td>
<td>96.1 101 121</td>
<td>106 114 130</td>
<td>116 127</td>
</tr>
<tr>
<td>OVS</td>
<td>2(\frac{1}{2}) d_o</td>
<td>58 65</td>
<td>60.9 74.2 87.6</td>
<td>76.4 88.4 101</td>
<td>89.4 92.1 107</td>
<td>96.1 101 121</td>
<td>106 114 130</td>
<td>116 127</td>
</tr>
</tbody>
</table>

Notes:
- $s = s_{all}$ indicates spacing less than minimum spacing required per AISC Specification Section J3.3.
- $s = s_{all}$ is from the center of the hole or slot to the center of the adjacent hole or slot in the line of force. Hole deformation is considered. When hole deformation is not considered, see AISC Specification Section J3.10.
- Decimal value has been rounded to the nearest sixteenth of an inch.
Table 7-5
Available Bearing Strength at Bolt Holes Based on Edge Distance
kips/in. thickness

<table>
<thead>
<tr>
<th>Hole Type</th>
<th>Edge Distance (L_e) in.</th>
<th>(F_u) ksi</th>
<th>(d_1/\sqrt{8})</th>
<th>(d_2/\sqrt{8})</th>
<th>(d_3/\sqrt{8})</th>
<th>(d_4/\sqrt{8})</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD</td>
<td>1/4</td>
<td>56</td>
<td>31.5</td>
<td>47.3</td>
<td>29.4</td>
<td>44.0</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>35.3</td>
<td>53.0</td>
<td>32.9</td>
<td>49.4</td>
<td>30.5</td>
<td>45.7</td>
</tr>
<tr>
<td>SSLT</td>
<td>2</td>
<td>58</td>
<td>43.5</td>
<td>65.3</td>
<td>52.2</td>
<td>78.3</td>
<td>53.3</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>48.8</td>
<td>73.1</td>
<td>58.5</td>
<td>78.3</td>
<td>59.7</td>
<td>89.6</td>
</tr>
<tr>
<td>SSLP</td>
<td>1/4</td>
<td>58</td>
<td>28.3</td>
<td>42.4</td>
<td>26.1</td>
<td>39.2</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>31.7</td>
<td>47.5</td>
<td>29.3</td>
<td>43.9</td>
<td>26.8</td>
<td>40.2</td>
</tr>
<tr>
<td>OVS</td>
<td>1/4</td>
<td>58</td>
<td>29.4</td>
<td>44.0</td>
<td>27.2</td>
<td>40.8</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>32.9</td>
<td>49.4</td>
<td>30.5</td>
<td>45.7</td>
<td>29.0</td>
<td>42.0</td>
</tr>
<tr>
<td>LSLP</td>
<td>1/4</td>
<td>58</td>
<td>43.5</td>
<td>65.3</td>
<td>52.2</td>
<td>78.3</td>
<td>51.1</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>48.8</td>
<td>73.1</td>
<td>58.5</td>
<td>78.3</td>
<td>57.3</td>
<td>85.9</td>
</tr>
<tr>
<td>OVS</td>
<td>1/4</td>
<td>58</td>
<td>16.3</td>
<td>24.5</td>
<td>10.9</td>
<td>16.3</td>
<td>5.44</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>18.3</td>
<td>27.4</td>
<td>12.2</td>
<td>18.3</td>
<td>6.09</td>
<td>9.14</td>
</tr>
<tr>
<td>LSLT</td>
<td>1/4</td>
<td>58</td>
<td>42.4</td>
<td>63.5</td>
<td>37.0</td>
<td>55.5</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>47.5</td>
<td>71.3</td>
<td>41.4</td>
<td>62.2</td>
<td>35.3</td>
<td>53.0</td>
</tr>
<tr>
<td>STD, SSLT, SSLP, OVS, LSLP</td>
<td>1/4</td>
<td>58</td>
<td>26.3</td>
<td>39.4</td>
<td>24.5</td>
<td>36.7</td>
<td>22.7</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>29.5</td>
<td>44.2</td>
<td>27.4</td>
<td>41.1</td>
<td>25.4</td>
<td>38.1</td>
</tr>
<tr>
<td>LSLT</td>
<td>1/4</td>
<td>58</td>
<td>30.3</td>
<td>44.4</td>
<td>35.4</td>
<td>43.5</td>
<td>36.5</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>34.8</td>
<td>49.8</td>
<td>37.1</td>
<td>48.8</td>
<td>39.1</td>
<td>54.5</td>
</tr>
</tbody>
</table>

Table 7-5 (continued)
Available Bearing Strength at Bolt Holes Based on Edge Distance
kips/in. thickness

<table>
<thead>
<tr>
<th>Hole Type</th>
<th>Edge Distance (L_e) in.</th>
<th>(F_u) ksi</th>
<th>(d_1/\sqrt{8})</th>
<th>(d_2/\sqrt{8})</th>
<th>(d_3/\sqrt{8})</th>
<th>(d_4/\sqrt{8})</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD</td>
<td>1/4</td>
<td>58</td>
<td>22.8</td>
<td>34.3</td>
<td>20.7</td>
<td>31.0</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>25.6</td>
<td>38.3</td>
<td>23.2</td>
<td>34.7</td>
<td>20.7</td>
<td>31.1</td>
</tr>
<tr>
<td>SSLT</td>
<td>2</td>
<td>58</td>
<td>49.8</td>
<td>73.4</td>
<td>46.8</td>
<td>70.1</td>
<td>44.6</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>54.8</td>
<td>82.3</td>
<td>52.4</td>
<td>75.6</td>
<td>50.0</td>
<td>75.0</td>
</tr>
<tr>
<td>SSLP</td>
<td>1/4</td>
<td>58</td>
<td>17.6</td>
<td>26.1</td>
<td>15.3</td>
<td>22.6</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>19.5</td>
<td>29.3</td>
<td>17.1</td>
<td>25.6</td>
<td>14.6</td>
<td>21.9</td>
</tr>
<tr>
<td>OVS</td>
<td>1/4</td>
<td>58</td>
<td>21.0</td>
<td>31.5</td>
<td>20.7</td>
<td>31.2</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>20.7</td>
<td>31.1</td>
<td>18.3</td>
<td>27.4</td>
<td>15.8</td>
<td>23.8</td>
</tr>
<tr>
<td>LSLP</td>
<td>1/4</td>
<td>58</td>
<td>25.0</td>
<td>37.0</td>
<td>24.5</td>
<td>35.0</td>
<td>22.6</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>25.0</td>
<td>37.0</td>
<td>24.5</td>
<td>35.0</td>
<td>22.6</td>
<td>37.0</td>
</tr>
<tr>
<td>OVS</td>
<td>1/4</td>
<td>58</td>
<td>18.5</td>
<td>27.7</td>
<td>16.3</td>
<td>24.5</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>20.7</td>
<td>31.1</td>
<td>18.3</td>
<td>27.4</td>
<td>15.8</td>
<td>23.8</td>
</tr>
<tr>
<td>LSLT</td>
<td>1/4</td>
<td>58</td>
<td>24.4</td>
<td>38.4</td>
<td>24.9</td>
<td>36.9</td>
<td>23.2</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>25.0</td>
<td>37.0</td>
<td>24.5</td>
<td>35.0</td>
<td>22.6</td>
<td>37.0</td>
</tr>
<tr>
<td>STD, SSLT, SSLP, OVS, LSLT</td>
<td>1/4</td>
<td>58</td>
<td>18.5</td>
<td>27.7</td>
<td>16.3</td>
<td>24.5</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>20.7</td>
<td>31.1</td>
<td>18.3</td>
<td>27.4</td>
<td>15.8</td>
<td>23.8</td>
</tr>
</tbody>
</table>

Notes

- **STD** = standard hole
- **SSLT** = short-slotted hole oriented transverse to the line of force
- **SSLP** = short-slotted hole oriented parallel to the line of force
- **OVS** = oversized hole
- **LSLT** = long-slotted hole oriented parallel to the line of force
- **LSLP** = long-slotted hole oriented transverse to the line of force

- ASD = lower tension
- LRFD = lower strength

- **ASD** = indicates spacing less than minimum spacing required per AISC Specification Section J3.3.

- For spacing indicated from the center of the hole or slot to the center of the adjacent hole or slot in the line of force, hole deformation is considered when hole deformation is not considered, see AISC Specification Section J3.10.

- Decimal values have been rounded to the nearest sixteenth of an inch.