Wood Construction: Column Design
Compression Members (revisited)

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for stability
 - ability to support a specified load without sudden or unacceptable deformations
Effect of Length (revisited)

- **long & slender**
- **short & stubby**

![Diagram of long & slender column with buckling and critical load]

![Diagram of short & stubby column with crushing and critical load]
Critical Stresses (revisited)

- when a column gets stubby, crushing will limit the load
- real world has loads with eccentricity
Bracing (revisited)

- bracing affects shape of buckle in one direction
- both should be checked!
Wood Columns

• slenderness ratio = \(L/d_{\text{min}} \)
 - \(d_1 \) = smallest dimension
 - \(l_e/d \leq 50 \) (max)

\[
f_c = \frac{P}{A} \leq F'_{c}
\]

- where \(F'_{c} \) is the allowable compressive strength parallel to the grain
- bracing common
- posts, round, built-up
Allowable Wood Stress

\[F'_{c} = F_{c} \left(C_{D} \right) \left(C_{M} \right) \left(C_{t} \right) \left(C_{F} \right) \left(C_{p} \right) \]

- where:
 \[F_{c} = \text{compressive strength parallel to grain} \]
 \[C_{D} = \text{load duration factor} \]
 \[C_{M} = \text{wet service factor} \]
 \[C_{M} = 1.0 \text{ dry} \]
 \[C_{t} = \text{temperature factor} \]
 \[C_{F} = \text{size factor} \]
 \[C_{p} = \text{column stability factor} \]

(Table 10.3)
Strength Factors

- **wood properties and load duration, \(C_D \)**
 - short duration
 - higher loads
 - normal duration
 - > 10 years

- **stability, \(C_p \)**
 - combination curve - tables

\[
F'_c = F_c^* C_p = \left(F_c C_D \right) C_p
\]
C_p Charts – Appendix A

Table 14 Column Stability Factor C_p

<table>
<thead>
<tr>
<th>F_{CE}</th>
<th>Sawed</th>
<th>Glu-Lam</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{c}^*</td>
<td>C_p</td>
<td>C_p</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F_{CE}</th>
<th>Sawed</th>
<th>Glu-Lam</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{c}^*</td>
<td>C_p</td>
<td>C_p</td>
</tr>
</tbody>
</table>

Notes:
- $F_{CE} = \frac{30E}{(l/d)^2}$ for sawed posts
- $F_{CE} = \frac{418E}{(l/d)^2}$ for glu-lam posts
Column Charts – Appendix A, 12 & 13

Table 12: Allowable Column Loads—Selected Species/Sizes. (Continued)

<table>
<thead>
<tr>
<th>Eff.</th>
<th>l/d</th>
<th>(l/d) sq</th>
<th>Fce</th>
<th>Fce/Fc</th>
<th>Cp</th>
<th>Fc (psi)</th>
<th>Pa (k)</th>
<th>Pa (k)</th>
<th>Pa (k)</th>
<th>Pa (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Col.</td>
<td></td>
</tr>
<tr>
<td>8×8</td>
<td>A = 56.25</td>
<td>8×10</td>
<td>A = 71.25</td>
<td>8×12</td>
<td>A = 86.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>19.2</td>
<td>368.64</td>
<td>1302.08</td>
<td>1.30</td>
<td>1.13</td>
<td>.7731</td>
<td>.7315</td>
<td>773</td>
<td>841</td>
<td>43.5</td>
</tr>
<tr>
<td>13</td>
<td>20.8</td>
<td>432.64</td>
<td>1109.47</td>
<td>1.11</td>
<td>0.96</td>
<td>.7258</td>
<td>.6767</td>
<td>726</td>
<td>778</td>
<td>40.8</td>
</tr>
<tr>
<td>14</td>
<td>22.4</td>
<td>501.76</td>
<td>956.63</td>
<td>0.96</td>
<td>0.83</td>
<td>.6767</td>
<td>.6235</td>
<td>677</td>
<td>717</td>
<td>38.1</td>
</tr>
<tr>
<td>15</td>
<td>24.00</td>
<td>576.00</td>
<td>833.33</td>
<td>0.83</td>
<td>0.72</td>
<td>.6235</td>
<td>.5694</td>
<td>624</td>
<td>655</td>
<td>35.1</td>
</tr>
<tr>
<td>16</td>
<td>25.60</td>
<td>655.36</td>
<td>732.42</td>
<td>0.73</td>
<td>0.64</td>
<td>.5747</td>
<td>.5244</td>
<td>575</td>
<td>603</td>
<td>32.3</td>
</tr>
<tr>
<td>17</td>
<td>27.20</td>
<td>739.84</td>
<td>648.79</td>
<td>0.65</td>
<td>0.56</td>
<td>.5303</td>
<td>.4744</td>
<td>530</td>
<td>546</td>
<td>29.8</td>
</tr>
<tr>
<td>18</td>
<td>28.80</td>
<td>829.44</td>
<td>758.70</td>
<td>0.58</td>
<td>0.50</td>
<td>.4873</td>
<td>.4336</td>
<td>487</td>
<td>499</td>
<td>27.4</td>
</tr>
<tr>
<td>19</td>
<td>30.40</td>
<td>924.16</td>
<td>519.39</td>
<td>0.52</td>
<td>0.45</td>
<td>.4475</td>
<td>.3975</td>
<td>448</td>
<td>457</td>
<td>25.2</td>
</tr>
<tr>
<td>20</td>
<td>32.00</td>
<td>1024.00</td>
<td>468.75</td>
<td>0.47</td>
<td>0.41</td>
<td>.4122</td>
<td>.3673</td>
<td>412</td>
<td>422</td>
<td>23.2</td>
</tr>
<tr>
<td>21</td>
<td>33.60</td>
<td>1128.96</td>
<td>425.17</td>
<td>0.43</td>
<td>0.37</td>
<td>.3826</td>
<td>.3360</td>
<td>383</td>
<td>386</td>
<td>21.5</td>
</tr>
<tr>
<td>22</td>
<td>35.20</td>
<td>1239.04</td>
<td>387.40</td>
<td>0.39</td>
<td>0.34</td>
<td>.3518</td>
<td>.3118</td>
<td>352</td>
<td>359</td>
<td>19.8</td>
</tr>
<tr>
<td>23</td>
<td>36.80</td>
<td>1354.24</td>
<td>354.44</td>
<td>0.35</td>
<td>0.31</td>
<td>.3199</td>
<td>.2869</td>
<td>320</td>
<td>330</td>
<td>18.0</td>
</tr>
<tr>
<td>24</td>
<td>38.40</td>
<td>1474.56</td>
<td>325.52</td>
<td>0.33</td>
<td>0.28</td>
<td>.3035</td>
<td>.2615</td>
<td>304</td>
<td>301</td>
<td>17.1</td>
</tr>
<tr>
<td>25</td>
<td>40.00</td>
<td>1600.00</td>
<td>300.00</td>
<td>0.30</td>
<td>0.26</td>
<td>.2785</td>
<td>.2442</td>
<td>279</td>
<td>281</td>
<td>15.7</td>
</tr>
<tr>
<td>26</td>
<td>41.60</td>
<td>1730.56</td>
<td>277.37</td>
<td>0.28</td>
<td>0.24</td>
<td>.2615</td>
<td>.2267</td>
<td>262</td>
<td>261</td>
<td>14.7</td>
</tr>
<tr>
<td>27</td>
<td>43.20</td>
<td>1866.24</td>
<td>257.20</td>
<td>0.26</td>
<td>0.22</td>
<td>.2442</td>
<td>.2090</td>
<td>244</td>
<td>240</td>
<td>13.7</td>
</tr>
<tr>
<td>28</td>
<td>44.80</td>
<td>2007.04</td>
<td>239.16</td>
<td>0.24</td>
<td>0.21</td>
<td>.2267</td>
<td>.2000</td>
<td>227</td>
<td>230</td>
<td>12.8</td>
</tr>
<tr>
<td>29</td>
<td>46.40</td>
<td>2152.96</td>
<td>222.95</td>
<td>0.22</td>
<td>0.19</td>
<td>.2090</td>
<td>.1819</td>
<td>209</td>
<td>209</td>
<td>11.8</td>
</tr>
<tr>
<td>30</td>
<td>48.00</td>
<td>2294.00</td>
<td>208.33</td>
<td>0.21</td>
<td>0.18</td>
<td>.2000</td>
<td>.1728</td>
<td>200</td>
<td>199</td>
<td>11.3</td>
</tr>
<tr>
<td>DF-L No.1</td>
<td>P&T</td>
<td>Fc = 1000</td>
<td>E = 1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF-L No.1 & Btr</td>
<td>Dim.Lum</td>
<td>Fc = 1500</td>
<td>E = 1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Procedure for Analysis

1. calculate L_e/d_{\min}
 - KL/d each axis, choose largest

2. obtain F'_c
 - compute $F_{cE} = \frac{K_{cE}E}{(L_e/d)^2}$
 - $K_{cE} = 0.3$ sawn
 - $K_{cE} = 0.418$ glu-lam

3. compute $F_c^* \approx F_c C_D$

4. calculate F_{cE}/F_c^* and get C_p (Table 14)

5. calculate $F'_c = F_c^* C_p$
Procedure for Analysis (cont’d)

6. compute $P_{\text{allowable}} = F' c \cdot A$
 - or find $f_{\text{actual}} = P/A$

7. is $P \leq P_{\text{allowable}}$? (or $f_{\text{actual}} \leq F' c$?)
 - yes: OK
 - no: overstressed & no good
Procedure for Design

1. guess a size (pick a section)

2. calculate L_e/d_{min}
 - KL/d each axis, choose largest

3. obtain F'_c
 - compute $F_{cE} = \frac{K_{cE}E}{\left(\frac{L_e}{d}\right)^2}$
 - $K_{cE} = 0.3$ sawn
 - $K_{cE} = 0.418$ glu-lam

4. compute $F_c^* \approx F_cC_D$

5. calculate F_{cE}/F_c^* and get C_p (Table 14)
Procedure for Design (cont’d)

6. compute $F'_c = F'_c C_p$

7. compute $P_{allowable} = F'_c A$
 - or find $f_{actual} = P/A$

8. is $P \leq P_{allowable}$? (or $f_{actual} \leq F'_c$?)
 - yes: OK
 - no: pick a bigger section and go back to step 2.
Timber Construction by Code

• light-frame
 – light loads
 – 2x’s
 – floor joists – 2x6, 2x8, 2x10, 2x12 typical at spacings of 12”, 16”, 24”
 – normal spans of 20-25 ft or 6-7.5 m
 – plywood spans between joists
 – stud or load-bearing masonry walls
 – limited to around 3 stories – fire safety
Design of Columns with Bending

- satisfy
 - strength
 - stability
- pick
 - section
Design

• Wood

\[
\left[\frac{f_c}{F'_c} \right]^2 + \frac{f_{bx}}{F_{bx}' \left[1 - \frac{f_c}{F_{cEx}} \right]} \leq 1.0
\]

[] term – magnification factor for P-Δ

\(F'_{bx}\) – allowable bending strength
Design Steps Knowing Loads

1. assume limiting stress
 - buckling, axial stress, combined stress
2. solve for r, A or S
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok
Laminated Timber Arches

- two & three hinged arches
- bent to wide range of curves
- bending and compression
- residual stress from laminating, C_c
Laminated Arch Design

- radius of curvature, R, limited by lam thickness, t
 - $R = 100t$ – southern pine & hardwoods
 - $R = 125t$ – softwood

- $r =$ radius to inside face of laminations

- $C_C = 1 - 2000\left(\frac{t}{r}\right)^2$

- $F'_{b'} = F_b(C_FC_C)$