lecture twenty seven

concrete construction: foundation design
Foundation

- the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock
Structural vs. Foundation Design

- **structural design**
 - choice of materials
 - choice of framing system
 - uniform materials and quality assurance
 - design largely independent of geology, climate, etc.
Structural vs. Foundation Design

- foundation design
 - cannot specify site materials
 - site is usually predetermined
 - framing/structure predetermined
 - site geology influences foundation choice
 - no site the same
 - no design the same
Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior
Soil Properties & Mechanics

- compressibility
 - settlements

- strength
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, q_u
 - allowable bearing capacity, $q_a = \frac{q_u}{S.F.}$
Soil Properties & Mechanics

- strength, q_a

Table 1804.3

<table>
<thead>
<tr>
<th>Class of material</th>
<th>Loadbearing pressure (pounds per square foot) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crystalline bedrock</td>
<td>12,000</td>
</tr>
<tr>
<td>2. Sedimentary rock</td>
<td>6,000</td>
</tr>
<tr>
<td>3. Sandy Gravel</td>
<td>5,000</td>
</tr>
<tr>
<td>4. Sand, silty sand, clayey sand, silty</td>
<td>3,000</td>
</tr>
<tr>
<td>gravel and clayey gravel</td>
<td></td>
</tr>
<tr>
<td>5. Clay, sandy clay, silty clay & clayey</td>
<td>2,000</td>
</tr>
<tr>
<td>silt</td>
<td></td>
</tr>
</tbody>
</table>

Note a. 1 psf = 47.9 Pa.

Figure 2.5

Presumptive surface bearing values of various soils, as given in the BOCA National Building Code/1996. (Reproduced by permission)
Bearing Failure

- shear

slip zone

punched wedge
Lateral Earth Pressure

- passive vs. active

(active) (trying to move wall)

(passive) (resists movement)
Foundation Materials

• concrete, plain or reinforced
 – shear
 – bearing capacity
 – bending
 – embedment length, development length

• other materials (piles)
 – steel
 – wood
 – composite
Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics
Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)
Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings
Types of Foundations

- mat foundations
- retaining walls
- basement walls
- pile foundations
- drilled piers
Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column
 - reduces stress from load to size the ground can withstand
Actual vs. Design Soil Pressure

• stress distribution is a function of
 – footing rigidity
 – soil behavior

• linear stress distribution assumed
Proportioning Footings

- **net allowable soil pressure, \(q_{\text{net}} \)**

 \[q_{\text{net}} = q_{\text{allowable}} - h_f (\gamma_c - \gamma_s) \]

 - considers all extra weight (overburden) from replacing soil with concrete

 - can be more overburden

- **design requirement with total unfactored load:**

 \[\frac{P}{A} \leq q_{\text{net}} \]
Concrete Spread Footings

- plain or reinforced
- ACI specifications
- \(P_u = \text{combination of factored } D, L, W \)
- ultimate strength
 - \(V_u \leq \phi V_c : \phi = 0.75 \text{ for shear} \)
 - plain concrete has shear strength
 - \(M_u \leq \phi M_n : \phi = 0.9 \text{ for flexure} \)
Concrete Spread Footings

- failure modes

Figure 9.2 "Shear" failure in a spread footing loaded in a laboratory (Talbot, 1913). Observe how this failure actually is a combination of tension and shear.

shear

Figure 9.3 Flexural failure in a spread footing loaded in a laboratory (Talbot, 1913).

bending
Concrete Spread Footings

- shear failure

- one way shear

- two way shear
Over and Under-reinforcement

- **reinforcement ratio for bending**
 \[\rho = \frac{A_s}{bd} \]
- **use as a design estimate to find** \(A_s, b, d \)
- **max** \(\rho \) **from** \(\varepsilon_{steel} \geq 0.004 \)
- **minimum for slabs & footings of uniform thickness**
 \[\frac{A_s}{bh} = 0.002 \quad \text{grade 40/50 bars} \]
 \[= 0.0018 \quad \text{grade 60 bars} \]
Reinforcement Length

- need length, ℓ_d
 - bond
 - development of yield strength

Figure 6.2.1 Development of reinforcement.

Figure 6.11.2 Development length L_{dn} for hooked bar.
Column Connection

- bearing of column on footing
 \[P_u \leq \phi P_n = \phi (0.85 f_c' A_1) \]
 \[\phi = 0.65 \text{ for bearing} \]
 - confined: increase \(\sqrt{\frac{A_2}{A_1}} \leq 2 \)

- dowel reinforcement
 - if \(P_u > P_b \), need compression reinforcement
 - min of 4 - #5 bars (or 15 metric)

\[
A_{fc} \leq \frac{P}{f_y}
\]
Wall Footings

- continuous strip for load bearing walls
- plain or reinforced
- behavior
 - wide beam shear
 - bending of projection
- dimensions usually dictated by codes for residential walls
- light loads
Eccentrically Loaded Footings

- footings subject to moments

- soil pressure resultant force **may not coincide** with the centroid of the footing
Differential Soil Pressure

– to avoid large rotations, limit the differential soil pressure across footing

– for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement
Kern Limit

• boundary of e for no tensile stress
• triangular stress block with \(p_{\text{max}} \)

\[
\text{volume} = \frac{wp_x}{2} = N
\]

\[
P_{\text{max}} = \frac{2N}{wx}
\]
Guidelines

- want resultant of load from pressure inside the middle third of base (kern)
 - ensures stability with respect to overturning

\[SF = \frac{M_{resist}}{M_{overturning}} = \frac{R \cdot x}{M} \geq 1.5 \]

- pressure under toe (maximum) \(\leq q_a \)
- shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line

- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise
Combined Footing Types

- rectangular
- trapezoid

- strap or cantilever
 - prevents overturning of exterior column

- raft/mat
 - more than two columns over an extended area
Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with centroid of footing area for uniformly distributed pressure assuming a rigid footing

\[q_{\text{max}} \leq q_a \]
Retaining Walls

• purpose
 – retain soil or other material

• basic parts
 – wall & base

 • additional parts
 • counterfort
 • buttress
 • key

Retaining Walls

[Diagram of retaining wall with soil, forces, and key]
Retaining Walls

- overturning
- settlement
- allowable bearing pressure
- sliding
- (adequate drainage)

Figure 2.50
Three failure mechanisms in retaining walls.
Retaining Walls

• procedure
 – proportion and check stability with working loads for bearing, overturning and sliding
 – design structure with factored loads

\[
SF = \frac{M_{resist}}{M_{overturning}} \geq 1.5 - 2
\]

\[
SF = \frac{F_{horizontal\text{-resist}}}{F_{sliding}} \geq 1.25 - 2
\]
Retaining Wall Proportioning

• estimate size
 – footing size, $B \approx 2/5 - 2/3$ wall height (H)
 – footing thickness $\approx 1/12 - 1/8$ footing size (B)
 – base of stem $\approx 1/10 - 1/12$ wall height ($H+h_f$)
 – top of stem $\geq 12”$
Retaining Walls Forces

- design like cantilever beam
- $V_u \leq \phi V_c : \phi = 0.75$ for shear
- $M_u \leq \phi M_n : \phi = 0.9$ for flexure

Figure 24.12 Typical loading diagrams for stem design: (a) with no surcharge loads; (b) with uniform surcharge load; (c) with point surcharge load.
Retaining Wall Types

• “gravity” wall
 – usually unreinforced
 – economical & simple

• cantilever retaining wall
 – common
Retaining Wall Types

- counterfort wall
- buttress wall
- bridge abutment
- basement frame wall (large basement areas)

very tall walls (> 20 - 25 ft)
Deep Foundations

- when spread footings, mats won’t work
- when they are required to transfer the structural loads to good bearing material
- to resist uplift or overturning
- to compact soil
- to control settlements of spread or mat foundations
Deep Foundation Types

- piles - usually driven, 6”-8” ϕ, 5’ +
- piers
- caissons
- drilled shafts
- bored piles
- pressure injected piles

Deep Foundation Types

- Drilled, excavated, concreted (with or without steel)
- 2.5’ - 10’/12’ ϕ
Deep Foundation Types

- **Deep Foundation Types**

 - **Sides straight or tapered**
 - **Grade**: Butt diameter 300-500 mm
 - **Pile may be treated with wood preservative**
 - **Cross section**: 150-250
 - **Tip diameter**: 150-250

- **Typical cross section**
 - **Welded Rail**
 - **Sheet pile**

- **Grade**: 300-450 mm diameter

- **Typical cross section (fluted shell)**
 - **Sides straight or tapered**
 - **Shell thickness**: 3-8
 - **Minimum tip diameter**: 200

- **Grade**: 200-450 diameter
 - **Cross section**: Corrugated shell
 - **Thickness**: 10 ga to 24 ga
 - **Sides straight or tapered**

- **Grade**: 300-600 mm
 - **Note**: reinforcing may be prestressed
 - **300-1400 diam.**

- **Typical cross sections**

Foundations 41
Lecture 27

Architectural Structures
ARCH 331
Deep Foundations

• classification
 – by material
 – by shape
 – by function (structural, compaction...)

• pile placement methods
 – driving with pile hammer (noise & vibration)
 – driving with vibration (quieter)
 – jacking
 – drilling hole & filling with pile or concrete
Piles Classified By Material

• timber
 – use for temporary construction
 – to densify loose sands
 – embankments
 – fenders, dolphins (marine)

• concrete
 – precast: ordinary reinforcement or prestressed
 – designed for axial capacity and bending with handling

lift hooks
Piles Classified By Material

- steel
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side

Piles Classified By Function

- **end bearing pile (point bearing)**

 - Soft or loose layer
 - "socketed"

 \[P_a = A_p \cdot f_a \]

 For use in soft or loose materials over a dense base

- **friction piles (floating)**

 - Common in both clay & sand
 - \(R_s = f(\text{adhesion}) \)
 - \(R_p \approx 0 \)

 - Tapered: sand & silt
Piles Classified By Function

- combination friction and end bearing

- uplift/tension piles
 structures that float, towers

- batter piles
 angled, cost more, resist large horizontal loads
Piles Classified By Function

– fender piles, dolphins, pile clusters

 large # of piles in a small area

– compaction piles
 • used to densify loose sands

– drilled piers
 • eliminate need for pile caps
 • designed for bearing capacity (not slender)
Pile Caps and Grade Beams

- like multiple column footing
- more shear areas to consider