Wood Beam Design

- National Design Specification
 - National Forest Products Association
 - ASD & LRFD (combined in 2005)
 - adjustment factors \times tabulated stress = allowable stress
 - adjustment factors terms, C with subscript
 - i.e., bending:

$$f_b \leq F_b' = F_b \times (\text{product of adjustment factors})$$

Timber

- lightweight: strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by “flaws”
- size varies by tree growth
- renewable resource
- manufactured wood
 - assembles pieces
 - adhesives

Wood Properties

- cell structure and density

http://www.swst.org/teach/sw2/struct1.html

http://www.swst.org/teach/sw2/struct1.html
Wood Properties

• moisture
 – exchanges with air easily
 – excessive drying causes warping and shrinkage
 – strength varies some

• temperature
 – steam
 – volatile products
 – combustion

Wood Properties

• load duration
 – short duration
 • higher loads
 – normal duration
 • > 10 years

• creep
 – additional deformation with no additional load

Structural Lumber

• dimension – 2 x’s (nominal)
• beams, posts, timber, planks
• grading
 – select structural
 – no. 1, 2, & 3
• tabular values by species
• glu-lam
• plywood

Adjustment Factors

• terms
 – $C_D = \text{load duration factor}$
 – $C_M = \text{wet service factor}$
 • 1.0 dry \leq 16% MC
 – $C_F = \text{size factor}$
 • visually graded sawn lumber and round timber $> 12''$ depth

\[C_F = \left(\frac{12}{d} \right)^{0.6} \leq 1.0 \]

Table 10.3 (pg 376)
Adjustment Factors

• terms
 – C_{fu} = flat use factor
 • not decking
 – C_i = incising factor
 • increase depth for pressure treatment
 – C_t = temperature factor
 • lose strength at high temperatures

Adjustment Factors

• terms
 – C_r = repetitive member factor
 – C_H = shear stress factor
 • splitting
 – C_V = volume factor
 • same as C_F for glue laminated timber
 – C_L = beam stability factor
 • beams without full lateral support
 – C_c = curvature factor for laminated arches

Allowable Stresses

• design values
 – F_b: bending stress
 – F_t: tensile stress
 – F_v: horizontal shear stress
 – $F_{c\perp}$: compression stress (perpendicular to grain)
 – F_c: compression stress (parallel to grain)
 – E: modulus of elasticity
 – F_p: bearing stress (parallel to grain)

Load Combinations

• design loads, take the bigger of
 – (dead loads)/0.9
 – (dead loads + any possible combination of live loads)/C_D

• deflection limits
 – no load factors
 – for stiffer members:
 • Δ_T max from LL + 0.5(DL)
Beam Design Criteria

- **strength design**
 - bending stresses predominate
 - shear stresses occur

- **serviceability**
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding

- **Beam Deformations**
 - curvature relates to
 - bending moment
 - modulus of elasticity
 - moment of inertia

\[
\frac{1}{R} = \frac{M}{EI}
\]

\[
\text{curvature} = \frac{M(x)}{EI}
\]

\[
\theta = \text{slope} = \int \frac{M(x)}{EI} \, dx
\]

\[
\Delta = \text{deflection} = \int \int \frac{M(x)}{EI} \, dx
\]

- **Deflection Limits**
 - based on service condition, severity

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>

- **Beam Design Criteria**

- **superpositioning**
 - use of beam charts
 - elastic range only!
 - “add” moment diagrams
 - “add” deflection CURVES (not maximums)

[Diagram of superpositioning]
Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_y

Design Procedure

1. Know F_{all} for the material or F_U for LRFD

2. Draw V & M, finding M_{max}

3. Calculate $S_{req'd} \left(f_b \leq F_b \right)$

4. Determine section size $S = \frac{bh^2}{6}$

Timber Beam Bracing

Beam Design

4*. Include self weight for M_{max} – and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper
Beam Design

6. Evaluate shear stresses - horizontal
 - \(f_v \leq F_v \)
 - rectangles and W's
 \[
 f_{v\text{-max}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}}
 \]
 - general
 \[
 f_{v\text{-max}} = \frac{VQ}{Ib}
 \]

Beam Design

7. Provide adequate bearing area at supports
 \[
 f_p = \frac{P}{A} \leq F_p
 \]

Beam Design

8. Evaluate torsion
 - \(f_v \leq F_v \)
 - circular cross section
 \[
 f_v = \frac{T \rho}{J}
 \]
 - rectangular
 \[
 f_v = \frac{T}{c_1 ab^2}
 \]

Beam Design

9. Evaluate deflections
 \[
 y_{\max}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}}
 \]
Decking

- across beams or joists
- floors: 16 in. span common
 - ¾ in. tongue-in-groove plywood
 - 5/8 in. particle board over ½ in. plywood
 - hardwood surfacing
- roofs: 24 in. span common
 - ½ in. plywood

Joists & Rafters

- allowable load tables \((w)\)
- allowable length tables for common live & dead loads
- lateral bracing needed
- common spacings

Engineered Wood

- plywood
 - veneers at different orientations
 - glued together
 - split resistant
 - higher and uniform strength
 - limited shrinkage and swelling
 - used for sheathing, decking, shear walls, diaphragms

Engineered Wood

- glued-laminated timber
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms
Engineered Wood

• I sections
 – beams

• other products
 – pressed veneer strip panels (Parallam)
 – laminated veneer lumber (LVL)

• wood fibers
 – Hardieboard: cement & wood

Timber Elements

• stressed-skin elements
 – modular built-up “plates”
 – typically used for floors or roofs

Timber Elements

• built-up box sections
 – built-up beams
 – usually site-fabricated
 – bigger spans

Timber Elements

• trusses
 – long spans
 – versatile
 – common in roofs
Timber Elements

- folded plates and arch panels
 - usually of plywood

Approximate Depths

Timber Elements

- arches and lamellas
 - arches commonly laminated timber
 - long spans
 - usually only for roofs