Wood Connections

Connectors
- joining
 - lapping
 - interlocking
 - butting
- mechanical
 - “third-elements”
- transfer load at a point, line or surface
 - generally more than a point due to stresses

Wood Connectors
- adhesives
 - used in a controlled environment
 - can be used with nails
- mechanical
 - bolts
 - lag bolts or lag screws
 - nails
 - split ring and shear plate connectors
 - timber rivets
Bolted Joints

- connected members in tension cause shear stress
- connected members in compression cause bearing stress

Tension Members

- members with holes have reduced area
- increased tension stress
- \(A_e \) is effective net area
 \[
 f_t = \frac{P}{A_e} \left(or \frac{T}{A_e} \right)
 \]

Effective Net Area

- likely path to “rip” across
- bolts divide transferred force too

Single Shear

- seen when 2 members are connected

\[
f_v = \frac{P}{A} = \frac{P}{\pi \frac{d^2}{4}}
\]
Double Shear

- seen when 3 members are connected

\[\Sigma F = 0 = -P + 2 \left(\frac{P}{2} \right) \]

\[f_v = \frac{P}{2A} = \frac{P}{2} = \frac{P}{\pi d^2/4} \]

Bolted Joints

- twisting

- tear out
 - shear strength
 - end distance & spacing

Bearing Stress

- compression & contact
- stress limited by species & grain direction to load
- projected area

\[f_p = \frac{P}{A_{projected}} = \frac{P}{td} \]

Nailed Joints

- tension stress (pullout)
- shear stress nails presumed to share load by distance from centroid of nail pattern

www.timber.org.au
Nailed Joints

• sized by pennyweight units / length
• embedment length
• dense wood, more capacity

Connectors Resisting Beam Shear

• plates with
 – nails
 – rivets
 – bolts

• splices

• V from beam load related to $V_{\text{longitudinal}}$

$$\frac{V_{\text{longitudinal}}}{I} = \frac{VQ}{nF_{\text{connector}}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p$$

Vertical Connectors

• isolate an area with vertical interfaces