Steel construction: columns & tension members

Design Methods (revisited)

- know
 - loads or lengths
- select
 - section or load
 - adequate for strength and no buckling

Allowable Stress Design (ASD)

- AICS 9th ed

\[
F_a = \frac{f_{\text{critical}}}{F.S.} = \frac{12\pi^2 E}{23(Kl/r)^2}
\]

- slenderness ratio \(\frac{Kl}{r} \)
 - for \(kl/r \geq C_c \)
 - \(= 126.1 \) with \(F_y = 36 \text{ ksi} \)
 - \(= 107.0 \) with \(F_y = 50 \text{ ksi} \)

Structural Steel

- standard rolled shapes
 - \(W, C, L, T \)
- tubing
- pipe
- built-up
C_c and Euler’s Formula

- **Kl/r < C_c**
 - short and stubby
 - parabolic transition
- **Kl/r > C_c**
 - Euler’s relationship
 - < 200 preferred

\[C_c = \sqrt{\frac{2\pi^2 E}{F_y}} \]

Short / Intermediate

- **L_e/r < C_c**

 \[F_a = 1 - \frac{(Kl/r)^2}{2C_c^2} \]

 - where

 \[F.S. = \frac{5}{3} + \frac{3(Kl/r)}{8C_c} - \frac{(Kl/r)^3}{8C_c^3} \]

Unified Design

- limit states for failure

 \[P_a \leq \frac{P_n}{\Omega} \]

 \[\phi_c = 0.90 \quad P_n = F_{cr} A_g \quad P_u \leq \phi_c P_n \]

 1. yielding \[KL \leq 4.71 \sqrt{\frac{E}{F_y}} \quad \text{or} \quad F_e \geq 0.44F_y \]

 2. buckling \[KL > 4.71 \sqrt{\frac{E}{F_y}} \quad \text{or} \quad F_e < 0.44F_y \]

\[F_e \text{ – elastic buckling stress (Euler)} \]
Unified Design

- \(P_n = F_{cr}A_g \)
 - for \(\frac{KL}{r} \leq 4.71 \) \[F_{cr} = \left(\frac{E}{F_y} \right) \leq 4.71 \left(\frac{F_y}{F_e} \right) \]
 - for \(\frac{KL}{r} > 4.71 \) \[F_{cr} = 0.877F_e \]
 - where \(F_e = \frac{\pi^2 E}{(KL/r)^2} \)

Procedure for Analysis

1. calculate \(KL/r \)
 - biggest of \(KL/r \) with respect to x axes and y axis
2. find \(F_a \) or \(F_{cr} \) from appropriate equation
 - tables are available
3. compute \(P_{allowable} = F_a \cdot A \) or \(P_n = F_{cr}A_g \)
 - or find \(f_{actual} = P/A \)
4. is \(P \leq P_{allowable} \) (\(P_a \leq P_n / \Omega \))? or is \(P_u \leq \phi P_n \)?
 - yes: ok
 - no: insufficient capacity and no good

Procedure for Design

1. guess a size (pick a section)
2. calculate \(KL/r \)
 - biggest of \(KL/r \) with respect to x axes and y axis
3. find \(F_a \) or \(F_{cr} \) from appropriate equations
 - or find a chart
4. compute \(P_{allowable} = F_a \cdot A \) (\(P_n / \Omega = F_{cr}A_g \))
 - or \(P_n = F_{cr}A_g \)
 - or find \(f_{actual} = P/A \)

Procedure for Design (cont’d)

5. is \(P \leq P_{allowable} \) (\(P_a \leq P_n / \Omega \))? or is \(P_u \leq \phi P_n \)?
 - yes: ok
 - no: pick a bigger section and go back to step 2.
6. check design efficiency
 - percentage of stress = \(\frac{P_r}{P_c} \cdot 100\% \)
 - if between 90-100%: good
 - if < 90%: pick a smaller section and go back to step 2.
Column Charts, F_a (pg. 361-364)

Table 4–1 (continued) Available Strength in Axial Compression, kips W Shapes

<table>
<thead>
<tr>
<th>Shape</th>
<th>W12×</th>
<th>W12×</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASD</td>
<td>LRFD</td>
</tr>
<tr>
<td>Design</td>
<td>P_{u1}</td>
<td>ϕP_{u1}</td>
</tr>
<tr>
<td>0</td>
<td>844</td>
<td>1270</td>
</tr>
<tr>
<td>6</td>
<td>811</td>
<td>1220</td>
</tr>
<tr>
<td>7</td>
<td>800</td>
<td>1200</td>
</tr>
<tr>
<td>8</td>
<td>787</td>
<td>1180</td>
</tr>
<tr>
<td>9</td>
<td>772</td>
<td>1160</td>
</tr>
<tr>
<td>10</td>
<td>756</td>
<td>1140</td>
</tr>
<tr>
<td>11</td>
<td>739</td>
<td>1120</td>
</tr>
</tbody>
</table>

Column Charts, ϕF_{cr}

Available Critical Stress, ϕF_{cr}, for Compression Members, ksi ($F_y = 60$ ksi and $\phi = 0.90$)

Beam-Column Design

• moment magnification ($P-\Delta$)

$$M_u = B_1M_{max-factored} \quad B_1 = \frac{C_m}{1 - \left(\frac{P_u}{P_{el1}}\right)}$$

C_m – modification factor for end conditions

$$= 0.6 - 0.4(M_1/M_2) \quad \text{or} \quad 0.85 \text{ restrained, } 1.00 \text{ unrestrained}$$

P_{el1} – Euler buckling strength

$$P_{el1} = \frac{\pi^2 EA}{(Kl/r)^2}$$
Beam-Column Design

• LRFD (Unified) Steel
 – for
 \[\frac{P_r}{P_c} \geq 0.2 : \frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \leq 1.0 \]
 – for
 \[\frac{P_r}{P_c} < 0.2 : \frac{P_u}{2\phi_c P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \leq 1.0 \]

 \(P_r \) is required, \(P_c \) is capacity
 \(\phi_c \) - resistance factor for compression = 0.9
 \(\phi_b \) - resistance factor for bending = 0.9

Design Steps Knowing Loads (revisited)

1. assume limiting stress
 • buckling, axial stress, combined stress
2. solve for \(r, A \) or \(S \)
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok

Rigid Frame Design (revisited)

• columns in frames
 – ends can be “flexible”
 – stiffness affected by beams and column = \(EI/L \)
 \[\sum EI \]
 \[\frac{G = \Psi = \frac{\sum EI}{l_c}}{\sum EI/l_b} \]
 – for the joint
 • \(l_c \) is the column length of each column
 • \(l_b \) is the beam length of each beam
 • measured center to center

Rigid Frame Design (revisited)

• column effective length, \(k \)
Tension Members

- steel members can have holes
- reduced area
 \[A_n = A_g - A_{of\ all\ holes} + t\sum \frac{s^2}{4g} \]
 (AISC - Steel Structures of the Everyday)
- increased stress

Effective Net Area

- likely path to “rip” across
- bolts divide transferred force too
- shear lag \(A_e \leq A_n U \)

Tension Members

- limit states for failure
 \[P_a \leq \frac{P_n}{\Omega} \leq \phi_t P_n \]
 \[P_n = F_y A_g \]
 \[P_n = F_u A_e \]
 \(A_g \) - gross area
 \(A_e \) - effective net area
 (holes 3/16” + d)
 \(F_u \) = the tensile strength of the steel (ultimate)