Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

Bolts

- bolted steel connections

Welds

- welded steel connections
Bolts

- types
 - materials
 - high strength
 - A307, A325, A490
 - location of threads
 - included - N
 - excluded - X
 - friction or bearing (SC)
 - always tightened

Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double
 - member
 - rupture

\[
R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi_v R_n
\]

- single shear or tension
 \[
 \phi_v = 0.75
 \]

- double shear
 \[
 R_n = F_n A_b
 \]
 \[
 R_n = F_n 2A_b
 \]

Steel Bolts & Welding 5
Lecture 18
Foundations Structures
ARCH 331
Su2011abn

Steel Bolts & Welding 6
Lecture 21
Foundations Structures
ARCH 331

http://www.fastenal.com
Bolts

- **bearing**
 \[R_a \leq \frac{R_n}{\Omega}, \quad R_u \leq \phi R_n \]
 \(\phi = 0.75 \)
 - deformation is concern
 \[R_n = 1.2 L_c t F_u \leq 2.4 dt F_u \]
 - deformation isn’t concern
 \[R_n = 1.5 L_c t F_u \leq 3.0 dt F_u \]
 - long slotted holes
 \[R_n = 1.0 L_c t F_u \leq 2.0 dt F_u \]
 \(L_c \) – clear length to edge or next hole (ex. 1\(\frac{1}{4} \), 3")

Welded Connection Design

- **considerations**
 - shear stress
 - yielding
 - rupture

Steel Bolts & Welding 9
Lecture 18
ARCH 331

Welded Connection Design

- **weld terms**
 - butt weld
 - fillet weld
 - plug weld
 - throat
 - field welding
 - shop welding

Steel Bolts & Welding 11
Lecture 21
ARCH 331

Welded Connection Design

- Table 7-5
 Available Bearing Strength at Bolt Holes Based on Edge Distance
 kips/ft, Thickness

Steel Bolts & Welding 12
Lecture 21
ARCH 331

Welded Connection Design

• weld process
 – melting of material
 – melted filler - electrode
 – shielding gas / flux
 – potential defects

• weld materials
 – E60XX
 – E70XX
 \(F_{EXX} = 70 \text{ ksi} \)

Welded Connection Design

• shear failure assumed
• throat
 – \(T = 0.707 \times \text{weld size} \)
• area
 – \(A = T \times \text{length of weld} \)
• weld metal generally stronger than base metal (ex. \(F_y = 50 \text{ ksi} \))

Welded Connection Design

• minimum
 – table

• maximum
 – material thickness (to \(¼” \))
 – \(1/16” \) less

• min. length
 – \(4 \times \text{size min.} \)
 – \(≥ 1 \frac{1}{2}” \)

TABLE J2.4

<table>
<thead>
<tr>
<th>Material Thickness of Thicker Part Jointed, in (mm)</th>
<th>Minimum Size of Fillet Welds, in (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(½)</td>
<td>(3.5)</td>
</tr>
<tr>
<td>(¾)</td>
<td>4.77</td>
</tr>
<tr>
<td>(1)</td>
<td>5.97</td>
</tr>
<tr>
<td>(1½)</td>
<td>7.16</td>
</tr>
<tr>
<td>(1¾)</td>
<td>8.35</td>
</tr>
<tr>
<td>(2)</td>
<td>9.55</td>
</tr>
<tr>
<td>(2½)</td>
<td>13.93</td>
</tr>
<tr>
<td>(3)</td>
<td>14.32</td>
</tr>
</tbody>
</table>

\(\text{R}_n = 0.6 F_{EXX} T l = S l \)

Welded Connection Design

• shear
 \[R_a \leq \frac{R_n}{\Omega} \]
 \[R_u \leq \phi R_n \]
 \[\phi = 0.75 \]

\begin{equation}
R_n = 0.6 F_{EXX} T l = S l
\end{equation}

Available Strengths of Fillet Welds

- \(\text{per inch of weld (fl)} \)
 - 60XX
 - 70XX

<table>
<thead>
<tr>
<th>Weld Size (in.)</th>
<th>60XX (ksi)</th>
<th>70XX (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(½)</td>
<td>3.55</td>
<td>4.10</td>
</tr>
<tr>
<td>(¾)</td>
<td>4.77</td>
<td>5.57</td>
</tr>
<tr>
<td>(1)</td>
<td>5.97</td>
<td>6.96</td>
</tr>
<tr>
<td>(1½)</td>
<td>7.16</td>
<td>8.35</td>
</tr>
<tr>
<td>(1¾)</td>
<td>8.35</td>
<td>9.74</td>
</tr>
<tr>
<td>(2)</td>
<td>9.55</td>
<td>11.14</td>
</tr>
<tr>
<td>(2½)</td>
<td>13.93</td>
<td>13.92</td>
</tr>
<tr>
<td>(3)</td>
<td>14.32</td>
<td>16.70</td>
</tr>
</tbody>
</table>

(not considering increase in bent weld submerged arc weld process)
Framed Beam Connections

• angles
 – bolted
 – welded

Framed Beam Connections

• terms
 – coping

Framed Beam Connections

• tables for standard bolt sizes & spacings
 • # bolts
 • bolt diameter, angle leg thickness
 • bearing on beam web

(AISC - Steel Structures of the Everyday)
Framed Beam Connections

- welded moment example

![Image of welded moment example](AISC - Steel Structures of the Everyday)

Framed Beam Connections

- welded/bolted moment example

![Image of welded/bolted moment example](AISC - Steel Structures of the Everyday)

Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

![Diagram of beam connections](AISC - Steel Structures of the Everyday)
Beam Connections

\[R_n = 0.6F_u A_{nv} + U_{bs} F_u A_{nt} \leq 0.6F_y A_{gv} + U_{bs} F_u A_{nt} \]

where \(U_{bs} \) is 1 for uniform tensile stress

Other Connections

- **seated beam**
- **continuous**
 - beam to column
 - beam to beam

Other Connections

- **splices**
- **rigid frame knees**
- **gussets & joints**
Other Connections

- base plates
 - anchor bolts
 - bearing on steel
 - bending of plate