Concrete Beam Design

- composite of concrete and steel
- American Concrete Institute (ACI)
 - design for maximum stresses
 - limit state design
 - service loads x load factors
 - concrete holds no tension
 - failure criteria is yield of reinforcement
 - failure capacity x reduction factor
 - factored loads < reduced capacity
 - concrete strength = f'_c

Concrete Construction

- cast-in-place
- tilt-up
- prestressing
- post-tensioning

Concrete Beams

- types
 - reinforced
 - precast
 - prestressed
- shapes
 - rectangular, I
 - T, double T's, bulb T's
 - box
 - spandrel
Concrete Beams

- shear
 - vertical
 - horizontal
 - combination:
 - tensile stresses at 45°
- bearing
 - crushing

Concrete

- hydration
 - chemical reaction
 - workability
 - water to cement ratio
 - mix design
- fire resistant
- cover for steel
- creep & shrinkage

Concrete

- low strength to weight ratio
- relatively inexpensive
 - Portland cement
 - types I - V
 - aggregate
 - course & fine
 - water
 - admixtures
 - air entraining
 - superplasticizers

Concrete

- placement (not pouring!)
- vibrating
- screeding
- floating
- troweling
- curing
- finishing
Reinforcement

• deformed steel bars (rebar)
 – Grade 40, \(F_y = 40 \text{ ksi} \)
 – Grade 60, \(F_y = 60 \text{ ksi} \) - most common
 – Grade 75, \(F_y = 75 \text{ ksi} \)
 – US customary in # of 1/8” \(\phi \)

• longitudinally placed
 – bottom
 – top for compression reinforcement

Composite Beams

• concrete
 – in compression

• steel
 – in tension

• shear studs

Reinforcement

• prestressing strand
• post-tensioning
• stirrups
• detailing
 – development length
 – anchorage
 – splices

Behavior of Composite Members

• plane sections remain plane
• stress distribution changes

\[
f_1 = \frac{E_1 \varepsilon}{\rho} = - \frac{E_1 y}{\rho} \quad \text{and} \quad f_2 = \frac{E_2 \varepsilon}{\rho} = - \frac{E_2 y}{\rho}
\]
Transformation of Material

- n is the ratio of E's
 \[n = \frac{E_2}{E_1} \]
- effectively widens a material to get same stress distribution

\[\text{Concrete Beams 13} \]
Foundations Structures
ARCH 331
F2008abn

Stresses in Composite Section

- with a section transformed to one material, new I
 \[n = \frac{E_2}{E_1} = \frac{E_{\text{steel}}}{E_{\text{concrete}}} \]
 - stresses in that material are determined as usual
 - stresses in the other material need to be adjusted by n

\[\text{Concrete Beams 14} \]
Foundations Structures
ARCH 331
F2008abn

Reinforced Concrete - stress/strain

Reinforced Concrete Analysis

- for stress calculations
 - steel is transformed to concrete
 - concrete is in compression above n.a. and represented by an equivalent stress block
 - concrete takes no tension
 - steel takes tension
 - force ductile failure

\[\text{Concrete Beams 15} \]
Foundations Structures
ARCH 331
F2008abn

\[\text{Concrete Beams 16} \]
Foundations Structures
ARCH 331
F2008abn
Location of n.a.

- ignore concrete below n.a.
- transform steel
- same area moments, solve for x

\[bx \cdot \frac{x}{2} - nA_s (d - x) = 0 \]

T sections

- n.a. equation is different if n.a. below flange

\[b_f h_f \left(x - \frac{h_f}{2} \right) + (x - h_f) b_w \left(x - \frac{h_f}{2} \right) - nA_s (d - x) = 0 \]

ACI Load Combinations

- 1.4D
- 1.2D + 1.6L + 0.5(L_r or S or R)
- 1.2D + 1.6(L_r or S or R) + (1.0L or 0.5W)
- 1.2D + 1.0W + 1.0L + 0.5(L_r or S or R)
- 1.2D + 1.0E + 1.0L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E

can also use old ACI factors

Reinforced Concrete Design

- stress distribution in bending

![Stress distribution diagram](image)

Wang & Salmon, Chapter 3
Force Equations
- \(C = 0.85 f'_c b a \)
- \(T = A_s f_y \)
- where
 - \(f'_c \) = concrete compressive strength
 - \(a \) = height of stress block
 - \(\beta_1 \) = factor based on \(f'_c \)
 - \(x \) = location to the n.a.
 - \(b \) = width of stress block
 - \(f_y \) = steel yield strength
 - \(A_s \) = area of steel reinforcement

Equilibrium
- \(T = C \)
- \(M_n = T(d - a/2) \)
 - \(d \) = depth to the steel n.a.
- with \(A_s \)
 - \(a = \frac{A_s f_y}{0.85 f'_c b} \)
 - \(M_u \leq \phi M_n, \phi = 0.9 \) for flexure*
 - \(\phi M_n = \phi T(d - a/2) = \phi A_s f_y (d - a/2) \)

Over and Under-reinforcement
- over-reinforced
 - steel won't yield
- under-reinforced
 - steel will yield
- reinforcement ratio
 - \(\rho = \frac{A_s}{bd} \)
 - use as a design estimate to find \(A_s, b, d \)
 - \(\max \rho \) is found with \(\varepsilon_{\text{steel}} \geq 0.004 \) (not \(\rho_{\text{bal}} \))
 - *with \(\varepsilon_{\text{steel}} \geq 0.005, \phi = 0.9 \)

\(A_s \) for a Given Section
- several methods
 - guess \(a \) and iterate
 1. guess \(a \) (less than n.a.)
 2. \(A_s = \frac{0.85 f'_c b a}{f_y} \)
 3. solve for \(a \) from \(M_u = \phi A_s f_y (d - a/2) \)
 \[a = 2\left(d - \frac{M_u}{\phi A_s f_y} \right) \]
 4. repeat from 2. until \(a \) from 3. matches \(a \) in 2.

*with \(\varepsilon_{\text{steel}} \geq 0.005, \phi = 0.9 \)
A_s for a Given Section (cont)

- **chart method**
 - Wang & Salmon Fig. 3.8.1 R_n vs. ρ
 1. calculate $R_n = \frac{M_R}{bd^2}$
 2. find curve for f'_c and f_y to get ρ
 3. calculate A_s and a
 - simplify by setting $h = 1.1d$

Reinforcement

- **min for crack control**
- **required**
 $$A_s = \frac{3\sqrt{f'_c}}{f_y} (bd)$$
- **not less than**
 $$A_s = \frac{200}{f_y} (bd)$$
- **A_{s-max}**
 $$a = \beta_1 (0.375d)$$
- **typical cover**
 - 1.5 in, 3 in with soil
- **bar spacing**

Annunciation Greek Orthodox Church

- **Wright, 1956**

Shells

- [Image of shells]

Concrete Beams 25

Lecture 22

Foundations Structures

ARCH 331

F2008abn

Concrete Beams 26

Lecture 22

Foundations Structures

ARCH 331

F2008abn

Concrete Beams 27

Lecture 22

Foundations Structures

ARCH 331

F2008abn

Concrete Beams 28

Lecture 22

Foundations Structures

ARCH 331

F2008abn

http://nisee.berkeley.edu/godden

http://www.bluffton.edu/~sullivanm/
Annunciation Greek Orthodox Church

• Wright, 1956

Cylindrical Shells

• can resist tension
• shape adds “depth”
• not vaults
• barrel shells

Kimball Museum, Kahn 1972

• outer shell edges
Kimball Museum, Kahn 1972
• skylights at peak

Approximate Depths