concrete construction:

T-beams & slabs

T sections

- two areas of compression in moment possible
- one-way joists
- effective flange width

Systems

- beams separate from slab
- beams integral with slab
 - close spaced
- continuous beams
- no beams

T sections

- negative bending: \(A_s = \min \frac{6 \sqrt{f'^c}}{f_y} (b_w \cdot d) \)
- effective width (interior)
 - \(L/4 \)
 - \(b_w + 16t \)
 - center-to-center of beams

\[
A_s = 6 \sqrt{f'^c}, \quad A_s = 3 \sqrt{f'^c}
\]
T sections
• usual analysis steps
1. assume no compression in web
2. design like a rectangular beam
3. needs reinforcement in slab too
4. also analyze for negative moment, if any

One-Way
• Joists
 – standard stems
 – 2.5” to 4.5” slab
 – ~30” widths
 – reusable forms

Compression Reinforcement
• doubly reinforced
• negative bending
• two compression forces
• bigger M_n
• control deflection
• increase ductility
• needs ties because of buckling

One-Way
• Joists
 – standard stems
 – 2.5” to 4.5” slab
 – ~30” widths
 – reusable forms
Compression Reinforcement

- analysis
 - \(A_s \) & \(A_s' \)
 - \(T = C_c + C_s \)
 - \(T = A_s f_y \)
 - \(C_s = A_s'(f'_s - 0.85f'_c) \)
 - \(C_c = 0.85f'_c ba \) with \(a = \beta x \)
 - \(f_s' \) not known, so solve for \(x \) (n.a.)
 - \(f_s' < f_y ? \)
 - \(M_n = T(d-a/2)+C_s(d-d') \)

Slabs

- one way behavior – like beams
- two way behavior – more complex

Slab Design

- one unit wide “strip”
- with uniform loads
 - like “wide” beams
 - moment / unit width
 - uniform curvature
- with point loads
 - resisted by stiffness of adjacent strips
 - more curvature in middle

Slab Design

- min thickness by code
- reinforcement
 - bars, welded wire mesh
 - cover
 - minimum by steel grade
 - 40-50:
 \[\rho = \frac{A_s}{bt} = 0.002 \]
 - 60:
 \[\rho = \frac{A_s}{bt} = 0.0018 \]
One-Way Slabs

- A_s tables
- max spacing
 - $\leq 3(t)$ and 18”
 - $\leq 5(t)$ and 18” – temp & shrinkage steel
- no room for stirrups

<table>
<thead>
<tr>
<th>Bar size (in.)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.22</td>
<td>0.19</td>
<td>0.17</td>
<td>0.15</td>
<td>0.13</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>4</td>
<td>0.44</td>
<td>0.34</td>
<td>0.30</td>
<td>0.27</td>
<td>0.24</td>
<td>0.22</td>
<td>0.20</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>5</td>
<td>0.66</td>
<td>0.53</td>
<td>0.45</td>
<td>0.41</td>
<td>0.37</td>
<td>0.34</td>
<td>0.31</td>
<td>0.29</td>
<td>0.27</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>0.88</td>
<td>0.71</td>
<td>0.60</td>
<td>0.53</td>
<td>0.46</td>
<td>0.41</td>
<td>0.38</td>
<td>0.35</td>
<td>0.33</td>
<td>0.31</td>
<td>0.30</td>
</tr>
<tr>
<td>7</td>
<td>1.10</td>
<td>0.91</td>
<td>0.80</td>
<td>0.72</td>
<td>0.66</td>
<td>0.60</td>
<td>0.55</td>
<td>0.51</td>
<td>0.48</td>
<td>0.45</td>
<td>0.42</td>
</tr>
<tr>
<td>8</td>
<td>1.32</td>
<td>1.13</td>
<td>1.00</td>
<td>0.95</td>
<td>0.89</td>
<td>0.83</td>
<td>0.77</td>
<td>0.72</td>
<td>0.68</td>
<td>0.63</td>
<td>0.60</td>
</tr>
<tr>
<td>9</td>
<td>1.52</td>
<td>1.31</td>
<td>1.19</td>
<td>1.06</td>
<td>0.99</td>
<td>0.93</td>
<td>0.86</td>
<td>0.81</td>
<td>0.76</td>
<td>0.71</td>
<td>0.68</td>
</tr>
<tr>
<td>10</td>
<td>1.72</td>
<td>1.51</td>
<td>1.39</td>
<td>1.26</td>
<td>1.19</td>
<td>1.13</td>
<td>1.07</td>
<td>1.01</td>
<td>0.96</td>
<td>0.90</td>
<td>0.86</td>
</tr>
<tr>
<td>11</td>
<td>1.93</td>
<td>1.71</td>
<td>1.59</td>
<td>1.46</td>
<td>1.40</td>
<td>1.34</td>
<td>1.28</td>
<td>1.22</td>
<td>1.17</td>
<td>1.12</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Precast

- prestressed
 - PCI Design Handbook
 - double T’s
 - hollow core
 - L’s
- topping
- load tables