Concrete construction: shear & deflection

Shear in Concrete Beams

- flexure combines with shear to form diagonal cracks
- horizontal reinforcement doesn’t help
- stirrups = vertical reinforcement

ACI Shear Values

- V_u is at distance d from face of support
- shear capacity: $V_c = V_u \times b_w \times d$
 - where b_w means thickness of web at n.a.

- shear stress (beams)
 - $\phi V_c = \phi 2 f_c' b_w d$
 - $\phi = 0.75$ for shear
 - f_c' is in psi

- shear strength:
 - $V_u \leq \phi V_c + \phi V_s$
 - V_s is strength from stirrup reinforcement
Stirrup Reinforcement

- shear capacity:
 \[V_s = \frac{A_v f_y d}{s} \]
 - \(A_v \) = area in all legs of stirrups
 - \(s \) = spacing of stirrup

- may need stirrups when concrete has enough strength!

Required Stirrup Reinforcement

- spacing limits

<table>
<thead>
<tr>
<th>(V_s)</th>
<th>(\phi V_s)</th>
<th>(V_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{V_s}{2})</td>
<td>(\frac{\phi V_s}{2})</td>
<td>(\frac{V_s}{2})</td>
</tr>
</tbody>
</table>

- Recommended
 - \(\frac{A_v}{f_y} \)
 - \(\frac{\phi A_v}{f_y} \)

- Minimum
 - \(\frac{d_2}{2} \) or \(24\text{ in.} \)
 - \(\frac{d_1}{2} \) or \(12\text{ in.} \)

Torsional Stress & Strain

- can see torsional stresses & twisting of axi-symmetrical cross sections
 - torque
 - remain plane
 - undistorted
 - rotates

- not true for square sections....

Shear Stress Distribution

- depend on the deformation
 - \(\phi \) = angle of twist
 - measure

- can prove planar section doesn’t distort
Shearing Strain

- related to ϕ
 \[\gamma = \frac{\rho \phi}{L} \]
- ρ is the radial distance from the centroid to the point under strain
- shear strain varies linearly along the radius: γ_{max} is at outer diameter

Torsional Stress - Strain

- know $f = \tau = G \cdot \gamma$ and $\gamma = \frac{\rho \phi}{L}$
- so
 \[\tau = G \cdot \frac{\rho \phi}{L} \]
- where G is the Shear Modulus

Shear Stress

- τ_{max} happens at outer diameter
- combined shear and axial stresses
 - maximum shear stress at 45° “twisted” plane
Shear Strain

- knowing \(\tau = G \cdot \frac{p \phi}{L} \) and \(\tau = \frac{T \rho}{J} \)
- solve: \(\phi = \frac{TL}{JG} \)
- composite shafts: \(\phi = \sum_i \frac{T_i L_i}{J_i G_i} \)

Noncircular Shapes

- torsion depends on \(J \)
- plane sections don’t remain plane
- \(\tau_{max} \) is still at outer diameter
- \(\tau_{max} = \frac{T}{c_1 ab^2 \phi} = \frac{TL}{c_2 ab^3 G} \)
 - where \(a \) is longer side (> \(b \))

Open Thin-Walled Sections

- with very large \(a/b \) ratios:

\[
\tau_{max} = \frac{T}{\frac{1}{3} ab^2} \quad \phi = \frac{TL}{\frac{1}{3} ab^3 G}
\]

Shear Flow in Closed Sections

- \(q \) is the internal shear force/unit length

\[
\tau = \frac{T}{2 t A} \quad \phi = \frac{TL}{4 t A^2 \sum_i \frac{s_i}{t_i}}
\]
- \(A \) is the area bounded by the centerline
- \(s_i \) is the length segment, \(t_i \) is the thickness
Shear Flow in Open Sections

- each segment has proportion of T with respect to torsional rigidity,

$$\tau_{\text{max}} = \frac{T t_{\text{max}}}{\frac{1}{3} \sum b_i t_i^3}$$

- total angle of twist:

$$\phi = \frac{TL}{\frac{1}{3} G \sum b_i t_i^3}$$

- I beams - web is thicker, so τ_{max} is in web

Torsional Shear Stress

- twisting moment

- and beam shear

Torsional Shear Reinforcement

- closed stirrups

- more longitudinal reinforcement

- area enclosed by shear flow

Development Lengths

- required to allow steel to yield (f_y)

- standard hooks
 - moment at beam end

- splices
 - lapped
 - mechanical connectors
Development Lengths

- l_d, embedment required both sides
- proper cover, spacing:
 - No. 6 or smaller
 \[l_d = \frac{d_b F_y}{25 \sqrt{f_c'}} \] or 12 in. minimum
 - No. 7 or larger
 \[l_d = \frac{d_b F_y}{20 \sqrt{f_c'}} \] or 12 in. minimum

Development Lengths

- bars in compression
 \[l_d = \frac{0.02 d_b F_y}{\sqrt{f_c'}} \leq 0.0003 d_b F_y \]
- splices
 - tension minimum is function of l_d and splice classification
 - compression minimum
 - is function of d_b and F_y

Concrete Deflections

- elastic range
 - l transformed
 - E_c (with f_c' in psi)
 - normal weight concrete (~ 145 lb/ft3)
 \[E_c = 57,000 \sqrt{f_c'} \]
 - concrete between 90 and 160 lb/ft3
 \[E_c = w^{1.5} 33 \sqrt{f_c'} \]
 - cracked
 - l cracked
 - E adjusted

Development Lengths

- hooks
 - bend and extension

Concrete Shear 21
Lecture 24
Foundations Structures
ARCH 331
F2008abn

Concrete Shear 22
Lecture 24
Foundations Structures
ARCH 331
F2008abn

Concrete Shear 23
Lecture 24
Foundations Structures
ARCH 331
F2008abn

Concrete Shear 24
Lecture 24
Foundations Structures
ARCH 331
F2008abn
Deflection Limits

- relate to whether or not beam supports or is attached to a damageable non-structural element
- need to check service live load and long term deflection against these

<table>
<thead>
<tr>
<th>Deflection Limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/180</td>
<td>roof systems (typical) – live</td>
</tr>
<tr>
<td>L/240</td>
<td>floor systems (typical) – live + long term</td>
</tr>
<tr>
<td>L/360</td>
<td>supporting plaster – live</td>
</tr>
<tr>
<td>L/480</td>
<td>supporting masonry – live + long term</td>
</tr>
</tbody>
</table>