concrete construction: flat spanning systems

Reinforced Concrete Design

• flat plate
 – 5”–10” thick
 – simple formwork
 – lower story heights

• flat slab
 – same as plate
 – 2 ¼”–8” drop panels

Reinforced Concrete Design

• beam supported
 – slab depth ~ L/20
 – 8”–60” deep

• one-way joists
 – 3”–5” slab
 – 8”–20” stems
 – 5”–7” webs
Reinforced Concrete Design

- two-way joist
 - “waffle slab”
 - 3”-5” slab
 - 8”-24” stems
 - 6”-8” webs
- beam supported slab
 - 5”-10” slabs
 - taller story heights

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - w_u from combos
 - uniform loads with $L/D \leq 3$
 - ℓ_n is clear span (+M) or average of adjacent clear spans (-M)

Reinforced Concrete Design

- simplified frame analysis
 - strips, like continuous beams
- moments require flexural reinforcement
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous
Reinforced Concrete Design

- two-way slabs - Direct Design Method
 - 3 or more spans each way
 - uniform loads with $L/D \leq 2$
 - rectangular panels with long/short span ≤ 2
 - successive spans can’t differ $> \text{longer}/3$
 - column offset no more than 10% span

Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads
Shear in Concrete
• at columns with waffle slabs

Openings in Slabs
• careful placement of holes
• shear strength reduced
• bending & deflection can increase

General Beam Design
• f'_c & f_y needed
• usually size just b & h
 – even inches typical (forms)
 – similar joist to beam depth
 – $b:h$ of 1:1.5-1:2.5
 – b_w & b_f for T
 – to fit reinforcement + stirrups
• slab design, t
 – deflection control & shear

General Beam Design (cont’d)
• custom design:
 – longitudinal steel
 – shear reinforcement
 – detailing
Space “Frame” Behavior

- handle uniformly distributed loads well
- bending moment
 - tension & compression “couple” with depth
 - member sizes can vary, but difficult

Folded Plates

- increased bending stiffness with folding
- lateral buckling avoided

Space “Frame” Behavior

- shear at columns
- support conditions still important
 - point supports not optimal
- fabrication/construction can dominate design

Folded Plates

- common for roofs
- edges need stiffening

http://nisee.berkeley.edu/godden
Folded Plates

– State Farm Center
 (Assembly Hall), University of Illinois
– Harrison & Abramovitz 1963
– Edge-supported dome spanning 400 feet wound
 with 614 miles of one-fifth inch steel wire