Concrete in Compression

- crushing
- vertical cracking
 - tension
- diagonal cracking
 - shear
- f'_c

Columns Reinforcement

- columns require
 - ties or spiral reinforcement to “confine” concrete
 (#3 bars minimum)
 - minimum amount of longitudinal steel
 (#5 bars minimum: 4 with ties, 5 with spiral)

Slenderness

- effective length in monolithic with respect to stiffness of joint: Ψ & k
- not slender when
 $$\frac{kL_u}{r} < 22$$
Effective Length (revisited)

• relative rotation

$$\Psi = \frac{\sum EI}{l_c - \sum EI/l_b}$$

Column Design

• $\phi_c = 0.65$ for ties, $\phi_c = 0.70$ for spirals
• P_o – no bending
 $$P_o = 0.85 f'_c (A_g - A_{st}) + f_y A_{st}$$
• $P_u \leq \phi_c P_n$
 – ties: $P_n = 0.8 P_o$
 – spiral: $P_n = 0.85 P_o$
• nominal axial capacity:
 – presumes steel yields
 – concrete at ultimate stress

Columns with Bending

• eccentric loads can cause moments
• moments can change shape and induce more deflection

$$(P - \Delta)$$
Columns with Bending

- for ultimate strength behavior, ultimate strains can't be exceeded
 - concrete 0.003
 - steel $\frac{f_y}{E_s}$

- P reduces with M

Design Methods

- calculation intensive
 - handbook charts
 - computer programs

Design Considerations

- bending at both ends
 - $P - \Delta$ maximum
- biaxial bending
- walls
 - unit wide columns
 - "deep" beam shear
- detailing
 - shorter development lengths
 - dowels to footings