Foundation

- the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock

Structural vs. Foundation Design

- **structural design**
 - choice of materials
 - choice of framing system
 - uniform materials and quality assurance
 - design largely independent of geology, climate, etc.

- **foundation design**
 - cannot specify site materials
 - site is usually predetermined
 - framing/structure predetermined
 - site geology influences foundation choice
 - no site the same
 - no design the same
Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior

soil Properties & Mechanics

- strength, \(q_a \)

<table>
<thead>
<tr>
<th>Class of material</th>
<th>Loadbearing pressure (pounds per square foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crystalline bedrock</td>
<td>12,000</td>
</tr>
<tr>
<td>2. Sedimentary rock</td>
<td>6,000</td>
</tr>
<tr>
<td>3. Sandy gravel</td>
<td>5,000</td>
</tr>
<tr>
<td>4. Sand, silty sand, clayey sand, silty gravel and clayey gravel</td>
<td>3,000</td>
</tr>
<tr>
<td>5. Clay, sandy clay, silty clay & clayey silt</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Note: 1 psi = 41.9 Pa.

Bearing Failure

- shear

- shear

- slip zone

- punched wedge

- ultimate bearing capacity, \(q_u \)
- allowable bearing capacity, \(q_a = \frac{q_u}{S.F.} \)
Lateral Earth Pressure

- passive vs. active

![Diagram showing active and passive lateral earth pressure](active.png)

Active (trying to move wall)

Passive (resists movement)

Foundation Materials

- concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length
- other materials (piles)
 - steel
 - wood
 - composite

Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics

Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)
Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings

Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column
 - reduces stress from load to size the ground can withstand

Actual vs. Design Soil Pressure

- stress distribution is a function of
 - footing rigidity
 - soil behavior

- linear stress distribution assumed

- mat foundations
- retaining walls
- basement walls
- pile foundations
- drilled piers
Proportioning Footings

- net allowable soil pressure, q_{net}
 - $q_{net} = q_{allowable} - h_f (\gamma_c - \gamma_s)$
 - considers all extra weight (overburden) from replacing soil with concrete
 - can be more overburden
- design requirement with total unfactored load:
 $$\frac{P}{A} \leq q_{net}$$

Concrete Spread Footings

- failure modes

Concrete Spread Footings

- shear failure

Concrete Spread Footings

- plain or reinforced
- ACI specifications
- $P_u =$ combination of factored D, L, W
- ultimate strength
 - $V_u \leq \phi V_c : \phi = 0.75$ for shear
 - plain concrete has shear strength
 - $M_u \leq \phi M_n : \phi = 0.9$ for flexure
Over and Under-reinforcement

- reinforcement ratio for bending
 \[\rho = \frac{A_s}{bd} \]
- use as a design estimate to find \(A_s, b, d \)
- max \(\rho \) from \(\varepsilon_{\text{steel}} \geq 0.004 \)
- minimum for slabs & footings of uniform thickness
 \[\frac{A_s}{bh} = 0.002 \text{ grade } 40/50 \text{ bars} \]
 \[= 0.0018 \text{ grade 60 bars} \]

Reinforcement Length

- need length, \(\ell_d \)
 - bond
 - development of yield strength

Column Connection

- bearing of column on footing
 \[P_d \leq \phi P_n = \phi (0.85 f'_c A_1) \]
 \[\phi = 0.65 \text{ for bearing} \]
 - confined: increase \(x \sqrt{\frac{A_2}{A_1}} \leq 2 \)
- dowel reinforcement
 - if \(P_d > P_b \), need compression reinforcement
 - min of 4 - #5 bars (or 15 metric)

Wall Footings

- continuous strip for load bearing walls
- plain or reinforced
- behavior
 - wide beam shear
 - bending of projection
- dimensions usually dictated by codes for residential walls
- light loads
Eccentrically Loaded Footings

- footings subject to moments

\[P \]

- soil pressure resultant force may not coincide with the centroid of the footing

\[M = P e \]

Differential Soil Pressure

- to avoid large rotations, limit the differential soil pressure across footing

- for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement

Kern Limit

- boundary of \(e \) for no tensile stress

- triangular stress block with \(p_{\text{max}} \)

\[
\text{volume} = \frac{wpx}{2} = N
\]

\[
 p_{\text{max}} = \frac{2N}{wx}
\]

Guidelines

- want resultant of load from pressure inside the middle third of base (kern)

- ensures stability with respect to overturning

\[
SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} = \frac{R \cdot x}{M} \geq 1.5
\]

- pressure under toe (maximum) \(\leq q_{ta} \)

- shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line
- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

Combined Footing Types

- rectangular
- trapezoid
- strap or cantilever
 - prevents overturning of exterior column
- raft/mat
 - more than two columns over an extended area

Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with centroid of footing area for uniformly distributed pressure
- assuming a rigid footing

\[q_{\text{max}} \leq q_a \]

\[R = P_1 + P_2 \]

Retaining Walls

- purpose
 - retain soil or other material
- basic parts
 - wall & base
 - additional parts
 - counterfort
 - buttress
 - key
Retaining Walls

• considerations
 – overturning
 – settlement
 – allowable bearing pressure
 – sliding
 – (adequate drainage)

Retaining Walls

• procedure
 – proportion and check stability with working loads for bearing, overturning and sliding
 – design structure with factored loads
 \[SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 - 2 \]
 \[SF = \frac{F_{\text{horizontal-resist}}}{F_{\text{sliding}}} \geq 1.25 - 2 \]

Retaining Wall Proportioning

• estimate size
 – footing size, \(B \) \(\approx \) 2/5 - 2/3 wall height (\(H \))
 – footing thickness \(\approx \) 1/12 - 1/8 footing size (\(B \))
 – base of stem \(\approx \) 1/10 - 1/12 wall height (\(H+h_f \))
 – top of stem \(\geq \) 12”

Retaining Walls Forces

• design like cantilever beam
 – \(V_u \) & \(M_u \) for reinforced concrete
 – \(V_u \leq \phi V_c : \phi = 0.75 \) for shear
 – \(M_u \leq \phi M_n : \phi = 0.9 \) for flexure
Retaining Wall Types

• “gravity” wall
 – usually unreinforced
 – economical & simple

• cantilever retaining wall
 – common

Deep Foundations

• usage
 – when spread footings, mats won’t work
 – when they are required to transfer the structural loads to good bearing material
 – to resist uplift or overturning
 – to compact soil
 – to control settlements of spread or mat foundations

Retaining Wall Types

• counterfort wall
 – very tall walls (> 20 - 25 ft)

• buttress wall

• bridge abutment

• basement frame wall (large basement areas)

Deep Foundation Types

– piles - usually driven, 6”-8” φ, 5’ +
 – piers
 – caissons
 – drilled shafts
 – bored piles
 – pressure injected piles

– piers
 – caissons
 – drilled shafts
 – bored piles
 – pressure injected piles

– drilled, excavated, concreted (with or without steel)

– 2.5’ - 10’/12’ φ
Deep Foundations

- classification
 - by material
 - by shape
 - by function (structural, compaction...)

- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete

Piles Classified By Material

- **timber**
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)

- **concrete**
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling

- **steel**
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side

- classification
 - by material
 - by shape
 - by function (structural, compaction...)

- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete

Piles Classified By Material

- **timber**
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)

- **concrete**
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling

- **steel**
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side
Piles Classified By Function

- **end bearing pile (point bearing)**

 ![End Bearing Pile Diagram]

 \[P_a = A_p \cdot f_a \]

 - soft or loose layer
 - "socketed"

 \[R_p \approx 0 \]

- **friction piles (floating)**

 ![Friction Pile Diagram]

 \[R_s = f(\text{adhesion}) \]

 \[R_p \]

- **combination friction and end bearing**

 ![Combination Pile Diagram]

 \[P \]

- **uplift/tension piles**

 ![Uplift/Tension Pile Diagram]

 \[R_s \]

- **batter piles**

 ![Batter Pile Diagram]

 angled, cost more, resist large horizontal loads

- **fender piles, dolphins, pile clusters**

 ![Fender Piles Diagram]

 large # of piles in a small area

- **compaction piles**

 used to densify loose sands

- **drilled piers**

 eliminate need for pile caps

 designed for bearing capacity (not slender)

Pile Caps and Grade Beams

- **like multiple column footing**

 ![Pile Caps Diagram]

- **more shear areas to consider**