Beams

• span horizontally
 – floors
 – bridges
 – roofs
• loaded transversely by gravity loads
• may have internal axial force
• will have internal shear force
• will have internal moment (bending)

Beams

• transverse loading
• sees:
 – bending
 – shear
 – deflection
 – torsion
 – bearing
• behavior depends on cross section shape

Beams

• bending
 – bowing of beam with loads
 – one edge surface stretches
 – other edge surface squishes
Beam Stresses

• stress = relative force over an area
 – tensile
 – compressive
 – bending
 • tension and compression + ...

Beam Stresses

• prestress or post-tensioning
 – put stresses in tension area to “pre-compress”
Beam Stresses

- shear – horizontal & vertical

Beam Stresses

- shear – horizontal

Beam Deflections

- depends on
 - load
 - section
 - material

Figure 5.4 Bending (flexural) loads on a beam.
Beam Deflections

- “moment of inertia”

Beam Styles

- vierendeel

- open web joists

- manufactured

http://nisee.berkeley.edu/godden

Internal Beam Forces

Internal Forces

- trusses
 - axial only, (compression & tension)

- in general
 - axial force
 - shear force, V
 - bending moment, M

Beam Loading

- concentrated force
- concentrated moment
 - spandrel beams
Beam Loading

- uniformly distributed load (line load)
- non-uniformly distributed load
 - hydrostatic pressure = \(\gamma h \)
 - wind loads

Beam Supports

- statically determinate
- statically indeterminate

Internal Beam Forces

- like method of sections / joints
 - no axial forces
- section must be in equilibrium
- want to know where biggest internal forces and moments are for designing
V & M Diagrams

- tool to locate V_{max} and M_{max} (at $V = 0$)
- necessary for designing
- have a different sign convention than external forces, moments, and reactions

Sign Convention

- shear force, V:
 - cut section to LEFT
 - if $\sum F_y$ is positive by statics, V acts down and is POSITIVE
 - beam has to resist shearing apart by V

Shear Sign Convention

- bending moment, M:
 - cut section to LEFT
 - if $\sum M_{\text{cut}}$ is clockwise, M acts ccw and is POSITIVE – flexes into a “smiley” beam has to resist bending apart by M
Bending Moment Sign Convention

• (+) Moment.
 - compression
 - tension in bottom, compression in top

• (−) Moment.
 - tension
 - tension in top, compression in bottom

Deflected Shape

• positive bending moment
 – tension in bottom, compression in top

• negative bending moment
 – tension in top, compression in bottom

• zero bending moment
 – inflection point

Constructing V & M Diagrams

• along the beam length, plot V, plot M

Mathematical Method

• cut sections with x as width

• write functions of V(x) and M(x)
Method 1: Equilibrium

- cut sections at important places
- plot V & M

\[V \]
\[L \]
\[M \]
\[L/2 \]

Method 2: Semigraphical

- by knowing
 - area under loading curve = change in V
 - area under shear curve = change in M
 - concentrated forces cause “jump” in V
 - concentrated moments cause “jump” in M

\[V_D - V_C = - \int x_P wdx \]
\[M_D - M_C = \int x_P Vdx \]

Method 1: Equilibrium

- important places
 - supports
 - concentrated loads
 - start and end of distributed loads
 - concentrated moments
- free ends
 - zero forces

Method 2

- relationships

\[\int Vdx \]
Method 2: Semigraphical

- M_{max} occurs where $V = 0$ (calculus)

Curve Relationships

- integration of functions
- line with 0 slope, integrates to sloped
- ex: load to shear, shear to moment

Curve Relationships

- line with slope, integrates to parabola
- ex: load to shear, shear to moment

Curve Relationships

- parabola, integrates to 3rd order curve
- ex: load to shear, shear to moment
Basic Procedure

1. Find reaction forces & moments
 - Plot axes, underneath beam load diagram

2. Starting at left

3. Shear is 0 at free ends

4. Shear has 2 values at point loads

5. Sum vertical forces at each section

Basic Procedure

M:

6. Starting at left

7. Moment is 0 at free ends

8. Moment has 2 values at moments

9. Sum moments at each section

10. Maximum moment is where shear = 0!
 (locate where \(V = 0 \))

Shear Through Zero

- slope of \(V \) is \(w \) (-w:1)

\[
\begin{align*}
\text{load} & \quad \text{shear} \\
\text{height} = V_A & \quad \text{width} = x \\
\frac{w \text{ (force/length)}}{V_A} & \quad x = \frac{w}{V_A}
\end{align*}
\]

Parabolic Shapes

- cases

\[
\begin{align*}
\text{up fast, then slow} & \quad \text{up slow, then fast} \\
\text{down fast, then slow} & \quad \text{down slow, then fast}
\end{align*}
\]