Center of Gravity

- location of equivalent weight
- determined with calculus

\[W = \int dW \]

Centroid

- “average” x & y of an area
- for a volume of constant thickness
 - \(\Delta W = \gamma \Delta A \) where \(\gamma \) is weight/volume
 - center of gravity = centroid of area

\[\bar{x} = \frac{\sum (x\Delta A)}{A} \]
\[\bar{y} = \frac{\sum (y\Delta A)}{A} \]
Centroid

- for a line, sum up length

\[\bar{x} = \frac{\sum (x \Delta L)}{L} \]
\[\bar{y} = \frac{\sum (y \Delta L)}{L} \]

1st Moment Area

- math concept

- the moment of an area about an axis

\[Q_x = \bar{y}A \]
\[Q_y = \bar{x}A \]

Symmetric Areas

- symmetric about an axis

- symmetric about a center point

- mirrored symmetry

Composite Areas

- made up of basic shapes

- areas can be negative

- (centroids can be negative for any area)
Basic Procedure

1. Draw reference origin (if not given)
2. Divide into basic shapes (+/-)
3. Label shapes
4. Draw table
5. Fill in table
6. Sum necessary columns
7. Calculate \(\bar{x} \) and \(\bar{y} \)

Area Centroids

- **Table 7.1 – pg. 242**

<table>
<thead>
<tr>
<th>Shape</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangular area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarter-circular area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semicircular area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semicircular parabolic area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parabolic area</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Moments of Inertia

- 2nd moment area
 - math concept
 - area \(x \) (distance)\(^2\)
- need for behavior of
 - beams
 - columns

Moment of Inertia

- about any reference axis
- can be negative

\[
I_y = \int x^2 \, dA
\]
\[
I_x = \int y^2 \, dA
\]

- resistance to bending and buckling
Moment of Inertia

- **same area moved away a distance**
 - **larger I**

Polar Moment of Inertia

- **for roundish shapes**
- **uses polar coordinates (r and θ)**
- **resistance to twisting**

\[
J_o = \int r^2 \, dA
\]

Radius of Gyration

- **measure of inertia with respect to area**

\[
r_x = \sqrt{\frac{I_x}{A}}
\]

Parallel Axis Theorem

- **can find composite I once composite centroid is known (basic shapes)**

\[
I_x = I_{cx} + Ad_y^2
= \bar{I}_x + Ad_y^2
\]

\[
I = \sum \bar{I} + \sum Ad^2
\]

\[
\bar{I} = I - Ad^2
\]
Basic Procedure

1. Draw reference origin (if not given)
2. Divide into basic shapes (+/-)
3. Label shapes
4. Draw table with $A, \bar{x}, \bar{x}A, \bar{y}, \bar{y}A, \bar{I}'s, d's, \text{ and } Ad^2's$
5. Fill in table and get \hat{x} and \hat{y} for composite
6. Sum necessary columns
7. Sum $I's$ and $Ad^2's$

Area Moments of Inertia

- x, y
- x', y'
- C

Table 7.2 – pg. 252: (bars refer to centroid)

<table>
<thead>
<tr>
<th>Shape</th>
<th>I_x</th>
<th>I_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle</td>
<td>$\frac{1}{12}Ah^3$</td>
<td>$\frac{1}{12}Ah^3$</td>
</tr>
<tr>
<td>Triangle</td>
<td>$\frac{1}{3}bh^3$</td>
<td>$\frac{1}{3}bh^3$</td>
</tr>
<tr>
<td>Circle</td>
<td>$\frac{1}{4}\pi r^4$</td>
<td>$\frac{1}{4}\pi r^4$</td>
</tr>
<tr>
<td>Semicircle</td>
<td>$\frac{1}{8}\pi r^4$</td>
<td>$\frac{1}{8}\pi r^4$</td>
</tr>
<tr>
<td>Quarter circle</td>
<td>$\frac{1}{16}\pi r^4$</td>
<td>$\frac{1}{16}\pi r^4$</td>
</tr>
<tr>
<td>Ellipse</td>
<td>$\frac{1}{4}ab$</td>
<td>$\frac{1}{4}ab$</td>
</tr>
</tbody>
</table>

$I = \int_A (x^2 + y^2) dA$