wood construction: materials & beams
Wood Beam Design

- **National Design Specification**
 - National Forest Products Association
 - ASD & LRFD (combined 2005)
 - adjustment factors \times tabulated stress = allowable stress
 - adjustment factors terms, C with subscript
 - i.e., bending:

$$f_b \leq F'_b = F_b \times \left(\text{product of adjustment factors} \right)$$
Timber

- lightweight: strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by “flaws”
- size varies by tree growth
- renewable resource
- manufactured wood
 - assembles pieces
 - adhesives
Wood Properties

- cell structure and density

http://www.swst.org/teach/set2/struct1.html
Wood Properties

- **moisture**
 - exchanges with air easily
 - excessive drying causes warping and shrinkage
 - strength varies some

- **temperature**
 - steam
 - volatile products
 - combustion

http://www.swst.org/teach/set2/struct1.html
Wood Properties

- load duration
 - short duration
 - higher loads
 - normal duration
 - > 10 years

- creep
 - additional deformation with no additional load
Structural Lumber

- **dimension** – 2 x’s (nominal)
- **beams, posts, timber, planks**
- **grading**
 - select structural
 - no. 1, 2, & 3
- **tabular values by species**
- **glu-lam**
- **plywood**
Adjustment Factors

- **terms**
 - $C_D =$ load duration factor
 - $C_M =$ wet service factor
 - $1.0 \text{ dry} \leq 16\% \text{ MC}$
 - $C_F =$ size factor
 - visually graded sawn lumber and round timber > 12” depth

$$C_F = \left(\frac{12}{d} \right)^{1/9} \leq 1.0$$

Table 10.3 (pg 376)
Adjustment Factors

- **terms**
 - $C_{fu} = \text{flat use factor}$
 - not decking
 - $C_i = \text{incising factor}$
 - increase depth for pressure treatment
 - $C_t = \text{temperature factor}$
 - lose strength at high temperatures
Adjustment Factors

• terms
 – $C_r = \text{repetitive member factor}$
 – $C_H = \text{shear stress factor}$
 • splitting
 – $C_V = \text{volume factor}$
 • same as C_F for glue laminated timber
 – $C_L = \text{beam stability factor}$
 • beams without full lateral support
 – $C_C = \text{curvature factor for laminated arches}$
Allowable Stresses

- **design values**
 - F_b: bending stress
 - F_t: tensile stress
 - F_v: horizontal shear stress
 - $F_{c\perp}$: compression stress (perpendicular to grain)
 - F_c: compression stress (parallel to grain)
 - E: modulus of elasticity
 - F_p: bearing stress (parallel to grain)
Load Combinations

• **design loads, take the bigger of**
 - (dead loads)/0.9
 - (dead loads + any possible combination of live loads)/C_D

• **deflection limits**
 - no load factors
 - for stiffer members:
 • Δ_T max from LL + 0.5(DL)
Beam Design Criteria

- **strength design**
 - bending stresses predominate
 - shear stresses occur

- **serviceability**
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding
Beam Design Criteria

- **superpositioning**
 - use of beam charts
 - elastic range only!
 - “add” moment diagrams
 - “add” deflection CURVES (not maximums)

1. SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD

\[
\begin{align*}
\text{Total Equiv. Uniform Load} & = w \ell \\
R & = V = \frac{w \ell}{2} \\
V_x & = w \left(\frac{\ell}{2} - x \right) \\
M_{\text{max. (at center)}} & = \frac{wx^2}{8} \\
M_x & = \frac{wx}{2} (\ell - x) \\
\Delta_{\text{max. (at center)}} & = \frac{5wx^4}{384EI} \\
\Delta_x & = \frac{wx}{24EI} (\ell^3 - 2x^2 + x^3)
\end{align*}
\]
Beam Deformations

- curvature relates to
 - bending moment
 - modulus of elasticity
 - moment of inertia

\[
\frac{1}{R} = \frac{M}{EI}
\]

\[
\text{curvature} = \frac{M(x)}{EI}
\]

\[
\theta = \text{slope} = \int \frac{M(x)}{EI} \, dx
\]

\[
\Delta = \text{deflection} = \int \int \frac{M(x)}{EI} \, dx
\]
Deflection Limits

- **based on service condition, severity**

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>
Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_y
Timber Beam Bracing

<table>
<thead>
<tr>
<th>Beam Depth/Width Ratio</th>
<th>Type of Lateral Bracing Required</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 to 1</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>3 to 1</td>
<td>The ends of the beam should be held in position</td>
<td></td>
</tr>
<tr>
<td>5 to 1</td>
<td>Hold the compression edge in line (continuously)</td>
<td></td>
</tr>
<tr>
<td>6 to 1</td>
<td>Diagonal bracing should be used</td>
<td></td>
</tr>
<tr>
<td>7 to 1</td>
<td>Both edges of the beam should be held in line</td>
<td></td>
</tr>
</tbody>
</table>
Design Procedure

1. Know F_{all} for the material or F_U for LRFD

2. Draw V & M, finding M_{max}

3. Calculate $S_{\text{req'd}}$ \(\left(f_b \leq F_b \right) \)

4. Determine section size

\[S = \frac{bh^2}{6} \]
Beam Design

4*. Include self weight for M_{max}
 – and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper
Beam Design

6. Evaluate shear stresses - horizontal

- \((f_v \leq F_v) \)
- rectangles and W's
 \(f_{v_{\text{max}}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}} \)
- general
 \(f_{v_{\text{max}}} = \frac{VQ}{Ib} \)
Beam Design

7. Provide adequate bearing area at supports

\[f_p = \frac{P}{A} \leq F_p \]
Beam Design

8. Evaluate torsion

\(f_v \leq F_v \)

- **circular cross section**
 \[f_v = \frac{T\rho}{J} \]

- **rectangular**
 \[f_v = \frac{T}{c_1ab^2} \]

TABLE 3.1. Coefficients for Rectangular Bars in Torsion

<table>
<thead>
<tr>
<th>a/b</th>
<th>c_1</th>
<th>c_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.208</td>
<td>0.1406</td>
</tr>
<tr>
<td>1.2</td>
<td>0.219</td>
<td>0.1661</td>
</tr>
<tr>
<td>1.5</td>
<td>0.231</td>
<td>0.1988</td>
</tr>
<tr>
<td>2.0</td>
<td>0.246</td>
<td>0.229</td>
</tr>
<tr>
<td>2.5</td>
<td>0.258</td>
<td>0.249</td>
</tr>
<tr>
<td>3.0</td>
<td>0.267</td>
<td>0.263</td>
</tr>
<tr>
<td>4.0</td>
<td>0.282</td>
<td>0.281</td>
</tr>
<tr>
<td>5.0</td>
<td>0.291</td>
<td>0.291</td>
</tr>
<tr>
<td>10.0</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.333</td>
<td>0.333</td>
</tr>
</tbody>
</table>
Beam Design

9. Evaluate deflections

\[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]
Decking

• across beams or joists
• floors: 16 in. span common
 – ¾ in. tongue-in-groove plywood
 – 5/8 in. particle board over ½ in. plywood
 – hardwood surfacing
• roofs: 24 in. span common
 – ½ in. plywood
Joists & Rafters

- allowable load tables \(w \)
- allowable length tables for common live & dead loads
- lateral bracing needed
- common spacings
Engineered Wood

• plywood
 – veneers at different orientations
 – glued together
 – split resistant
 – higher and uniform strength
 – limited shrinkage and swelling
 – used for sheathing, decking, shear walls, diaphragms
Engineered Wood

- glued-laminated timber
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms
Engineered Wood

• I sections
 – beams

• other products
 – pressed veneer strip panels (Parallam)
 – laminated veneer lumber (LVL)

• wood fibers
 – Hardieboard: cement & wood
Timber Elements

- stressed-skin elements
 - modular built-up “plates”
 - typically used for floors or roofs

![Diagram of a typical two-sided stressed-skin panel with labels for plywood splice plate, vent holes, lumber header, scarf joint, lumber stringers, blanket insulation, ventilation openings, and lumber blocking.]
Timber Elements

- built-up box sections
 - built-up beams
 - usually site-fabricated
 - bigger spans
Timber Elements

• trusses
 – long spans
 – versatile
 – common in roofs
Timber Elements

- folded plates and arch panels
 - usually of plywood
Timber Elements

- arches and lamellas
 - arches commonly laminated timber
 - long spans
 - usually only for roofs
Approximate Depths

FIGURE 15–3 Approximate span ranges for timber systems.