Connectors

- joining
 - lapping
 - interlocking
 - butting

- mechanical
 - “third-elements”

- transfer load at a point, line or surface
 - generally more than a point due to stresses

Wood Connectors

- adhesives
 - used in a controlled environment
 - can be used with nails

- mechanical
 - bolts
 - lag bolts or lag screws
 - nails
 - split ring and shear plate connectors
 - timber rivets
Bolted Joints

- connected members in tension cause shear stress
- connected members in compression cause bearing stress

Tension Members

- members with holes have reduced area
- increased tension stress
- A_e is effective net area
 \[f_t = \frac{P}{A_e} \left(or \frac{T}{A_e} \right) \]

Effective Net Area

- likely path to “rip” across
- bolts divide transferred force too

Single Shear

- seen when 2 members are connected
 \[f_v = \frac{P}{A} = \frac{P}{\pi \frac{d^2}{4}} \]
Double Shear
- seen when 3 members are connected

\[\Sigma F = 0 = -P + 2\left(\frac{P}{2}\right) \]

\[f_v = \frac{P}{2A} = \frac{P}{2} = \frac{2}{\pi d^2/4} \]

Free-body diagram of middle section of the bolt in shear.

(Figure 5.12: A bolted connection in double shear)

Bolted Joints
- twisting
- tear out
 - shear strength
 - end distance & spacing

www.timber.org.au

(Figure 3: Higher connection capacities can be achieved with increased timber spacings. Taylor & Line 2002)

Bearing Stress
- compression & contact
- stress limited by species & grain direction to load
- projected area

\[f_p = \frac{P}{A_{projected}} = \frac{P}{td} \]

(Figure: Bearing stress on plate)

Nailed Joints
- tension stress (pullout)
- shear stress nails presumed to share load by distance from centroid of nail pattern

(Figure: Lateral load, withdrawal load)
Nailed Joints

- sized by pennyweight units / length
- embedment length
- dense wood, more capacity

Connectors Resisting Beam Shear

- plates with
 - nails
 - rivets
 - bolts
- splices
- $V_{\text{longitudinal}} = \frac{VQ}{I}$
- $nF_{\text{connector}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p$

Vertical Connectors

- isolate an area with vertical interfaces

\[nF_{\text{connector}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p \]