Steel beams

Lecture 18

Steel construction: materials & beams
Steel Beam Design

- American Institute of Steel Construction
 - Manual of Steel Construction
 - ASD & LRFD
 - combined in 2005
Steel Materials

- smelt iron ore
- add alloying elements
- heat treatments
- iron, carbon
- microstructure

A36 steel, JOM 1998
Steel Materials

- cast into billets
- hot rolled
- cold formed
- residual stress
- corrosion-resistant “weathering” steels
- stainless
Steel Materials

• steel grades
 – ASTM A36 – carbon
 • plates, angles
 • $F_y = 36 \text{ ksi}$ & $F_u = 58 \text{ ksi}$
 – ASTM A572 – high strength low-alloy
 • some beams
 • $F_y = 60 \text{ ksi}$ & $F_u = 75 \text{ ksi}$
 – ASTM A992 – for building framing
 • most beams
 • $F_y = 50 \text{ ksi}$ & $F_u = 65 \text{ ksi}$
Steel Properties

- high strength to weight ratio
- elastic limit – yield (F_y)
- inelastic – plastic
- ultimate strength (F_u)
- ductile
- strength sensitive to temperature
- can corrode
- fatigue

strain hardening

Winnepeg DOT
Structural Steel

- standard rolled shapes (W, C, L, T)
- open web joists
- plate girders
- decking
Steel Construction

- welding
- bolts
Steel Construction

• fire proofing
 – cementicious spray
 – encasement in gypsum
 – intumescent – expands with heat
 – sprinkler system
Unified Steel Design

• ASD

\[R_a \leq \frac{R_n}{\Omega} \]

- bending (braced) \(\Omega = 1.67 \)
- bending (unbraced*) \(\Omega = 1.67 \)
- shear \(\Omega = 1.5 \) or 1.67
- shear (bolts & welds) \(\Omega = 2.00 \)
- shear (welds) \(\Omega = 2.00 \)

* flanges in compression can buckle
Unified Steel Design

- braced vs. unbraced
LRFD

• loads on structures are
 - not constant
 - can be more influential on failure
 - happen more or less often
 - UNCERTAINTY

\[R_u = \gamma_D R_D + \gamma_L R_L \leq \phi R_n \]

\(\phi \) - resistance factor
\(\gamma \) - load factor for (D)ead & (L)ive load
LRFD Steel Beam Design

- limit state is yielding all across section
- outside elastic range
- load factors & resistance factors

\[f_y = 50 \text{ksi} \]

\[\varepsilon_y = 0.001724 \]
LRFD Load Combinations

- 1.4D
- 1.2D + 1.6L + 0.5(L_r or S or R)
- 1.2D + 1.6(L_r or S or R) + (L or 0.5W)
- 1.2D + 1.0W + L + 0.5(L_r or S or R)
- 1.2D + 1.0E + L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E
 - F has same factor as D in 1-5 and 7
 - H adds with 1.6 and resists with 0.9 (permanent)

ASCE-7 (2010)
Beam Design Criteria (revisited)

• strength design
 – bending stresses predominate
 – shear stresses occur

• serviceability
 – limit deflection
 – stability

• superpositioning
 – use of beam charts
 – elastic range only!
 – “add” moment diagrams
 – “add” deflection CURVES (not maximums)
Steel Beams

- lateral stability - bracing
- local buckling – stiffen, or bigger I_y
Local Buckling

- **steel I beams**
- **flange**
 - buckle in direction of smaller radius of gyration
- **web**
 - force
 - “crippling”
Local Buckling

- flange
- web

Figure 2-5. Flange Local Bending Limit State
(Beedle, I.S., Christopher, R., 1964)

Figure 2-7. Web Local Buckling Limit State
(SAC Project)
Shear in Web

- panels in plate girders or webs with large shear
- buckling in compression direction
- add stiffeners
Shear in Web

- plate girders and stiffeners
Steel Beams

- **bearing**
 - provide adequate area
 - prevent local yield of flange and web

Figure 9.10 Considerations for bearing in beams with thin webs, as related to web crippling (buckling of the thin web in compression).
\[\sum \gamma_i R_i = M_u \leq \phi_b M_n = 0.9 F_y Z \]

- **\(M_u \)** - maximum moment
- **\(\phi_b \)** - resistance factor for bending = 0.9
- **\(M_n \)** - nominal moment (ultimate capacity)
- **\(F_y \)** - yield strength of the steel
- **\(Z \)** - plastic section modulus*
Internal Moments - at yield

- material hasn’t failed

\[M_y = \frac{I}{c} f_y = \frac{b h^2}{6} f_y \]

\[= \frac{b(2c)^2}{6} f_y = \frac{2bc^2}{3} f_y \]
Internal Moments - ALL at yield

- all parts reach yield
- plastic hinge forms
- ultimate moment
- $A_{\text{tension}} = A_{\text{compression}}$

$$M_p = bc^2 f_y = \frac{3}{2} M_y$$
n.a. of Section at Plastic Hinge

- cannot guarantee at centroid
- \(f_y \cdot A_1 = f_y \cdot A_2 \)
- moment found from yield stress times moment area

\[
M_p = f_y A_1 d = f_y \sum_{n.a.} A_i d_i
\]
Plastic Hinge Development

(a) $M < M_Y$

(b) $M = M_Y$

(c) $M > M_Y$

(d) $M = M_p$
Plastic Hinge Examples

- stability can be effected
Plastic Section Modulus

- shape factor, k

 $= \frac{3}{2}$ for a rectangle

 ≈ 1.1 for an I

- plastic modulus, Z

 $Z = \frac{M_p}{f_y}$
LRFD – Shear (compact shapes)

\[\sum \gamma_i R_i = V_u \leq \phi_v V_n = 1.0 \left(0.6 F_{yw} A_w \right) \]

- \(V_u \) - maximum shear
- \(\phi_v \) - resistance factor for shear = 1.0
- \(V_n \) - nominal shear
- \(F_{yw} \) - yield strength of the steel in the web
- \(A_w \) - area of the web = \(t_w d \)
LRFD – Flexure Design

- limit states for beam failure
 1. yielding
 2. lateral-torsional buckling*
 3. flange local buckling
 4. web local buckling

- minimum M_n governs

\[
\sum \gamma_i R_i = M_u \leq \phi_b M_n
\]
Compact Sections

- plastic moment can form before buckling
- criteria

\[\frac{b_f}{2t_f} \leq 0.38 \sqrt{\frac{E}{F_y}} \]

- and \[\frac{h_c}{t_w} \leq 3.76 \sqrt{\frac{E}{F_y}} \]

TABLE A.3 Properties of W Shapes
Lateral Torsional Buckling

\[M_n = C_b \left[\text{moment based on lateral buckling} \right] \leq M_p \]

\[C_b = \frac{12.5 M_{\text{max}}}{2.5 M_{\text{max}} + 3 M_A + 4 M_B + 3 M_C} \]

- \(C_b \) = modification factor
- \(M_{\text{max}} \) = \(|\text{max moment}| \), unbraced segment
- \(M_A \) = \(|\text{moment}| \), 1/4 point
- \(M_B \) = \(|\text{moment}| \), center point
- \(M_C \) = \(|\text{moment}| \), 3/4 point
Beam Design Charts

Table 3-10 (continued)

W Shapes

Available Moment vs. Unbraced Length

<table>
<thead>
<tr>
<th>ASD</th>
<th>LRFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>78</td>
</tr>
<tr>
<td>48</td>
<td>72</td>
</tr>
<tr>
<td>44</td>
<td>66</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Available Moment, $M_{c,0} / M_p$ (1 kip-ft increments)</th>
<th>Unbraced Length (0.5-ft increments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W8x21</td>
<td>2</td>
</tr>
<tr>
<td>W10x46</td>
<td>4</td>
</tr>
<tr>
<td>W12x22</td>
<td>6</td>
</tr>
<tr>
<td>W14x22</td>
<td>8</td>
</tr>
<tr>
<td>W16x22</td>
<td>10</td>
</tr>
<tr>
<td>W18x22</td>
<td>12</td>
</tr>
<tr>
<td>W20x22</td>
<td>14</td>
</tr>
<tr>
<td>W22x22</td>
<td>16</td>
</tr>
<tr>
<td>W24x22</td>
<td>18</td>
</tr>
</tbody>
</table>
Charts & Deflections

• beam charts
 – solid line is most economical
 – dashed indicates there is another more economical section
 – self weight is NOT included in M_n

• deflections
 – no factors are applied to the loads
 – often governs the design
Design Procedure (revisited)

1. **Know unbraced length, material, design method** (Ω, ϕ)

2. **Draw V & M, finding M_{max}**

3. **Calculate $Z_{\text{req'd}}$**

\[
\begin{align*}
M_a & \leq M_n / \Omega \\
M_u & \leq \phi_b M_n
\end{align*}
\]

4. **Choose (economical) section from section or beam capacity charts**
Beam Charts by S_x (Appendix A)

Table 11 Listing of W Shapes in Descending Order of S_x for Beam Design.

<table>
<thead>
<tr>
<th>S_x—US (in.³)</th>
<th>Section</th>
<th>S_x—SI ($10^3 \times$ mm³)</th>
<th>S_x—US (in.³)</th>
<th>Section</th>
<th>S_x—SI ($10^3 \times$ mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>448</td>
<td>W33 × 141</td>
<td>7350</td>
<td>188</td>
<td>W18 × 97</td>
<td>3080</td>
</tr>
<tr>
<td>439</td>
<td>W36 × 135</td>
<td>7200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>411</td>
<td>W27 × 146</td>
<td>6740</td>
<td>175</td>
<td>W16 × 100</td>
<td>2870</td>
</tr>
<tr>
<td>406</td>
<td>W33 × 130</td>
<td>6660</td>
<td>173</td>
<td>W14 × 109</td>
<td>2840</td>
</tr>
<tr>
<td>380</td>
<td>W30 × 132</td>
<td>6230</td>
<td>171</td>
<td>W21 × 83</td>
<td>2800</td>
</tr>
<tr>
<td>371</td>
<td>W24 × 146</td>
<td>6080</td>
<td>166</td>
<td>W18 × 86</td>
<td>2720</td>
</tr>
<tr>
<td>359</td>
<td>W33 × 118</td>
<td>5890</td>
<td>157</td>
<td>W14 × 99</td>
<td>2570</td>
</tr>
<tr>
<td>355</td>
<td>W30 × 124</td>
<td>5820</td>
<td>155</td>
<td>W16 × 89</td>
<td>2540</td>
</tr>
<tr>
<td>329</td>
<td>W30 × 116</td>
<td>5400</td>
<td>151</td>
<td>W21 × 73</td>
<td>2480</td>
</tr>
<tr>
<td>329</td>
<td>W24 × 131</td>
<td>5400</td>
<td>146</td>
<td>W18 × 76</td>
<td>2390</td>
</tr>
<tr>
<td>329</td>
<td>W21 × 147</td>
<td>5400</td>
<td>143</td>
<td>W14 × 90</td>
<td>2350</td>
</tr>
</tbody>
</table>
TABLE 9.1 Load Factor Resistance Design Selection for Shapes Used as Beams

<table>
<thead>
<tr>
<th>Designation</th>
<th>L_p</th>
<th>L_r</th>
<th>M_p</th>
<th>M_r</th>
<th>L_p</th>
<th>L_r</th>
<th>M_p</th>
<th>M_r</th>
<th>r_y</th>
<th>$b_y/2t_y$</th>
<th>h_{ix}</th>
<th>X_{ij}</th>
<th>$X_{ix} \times 10^6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 33 × 141</td>
<td>514</td>
<td>10.1</td>
<td>30.1</td>
<td>1,542</td>
<td>945</td>
<td>8.59</td>
<td>23.1</td>
<td>2,142</td>
<td>1,493</td>
<td>2.43</td>
<td>6.01</td>
<td>49.6</td>
<td>1,800</td>
</tr>
<tr>
<td>W 30 × 148</td>
<td>500</td>
<td>9.50</td>
<td>30.6</td>
<td>1,500</td>
<td>945</td>
<td>8.06</td>
<td>22.8</td>
<td>2,083</td>
<td>1,453</td>
<td>2.28</td>
<td>4.44</td>
<td>41.6</td>
<td>2,310</td>
</tr>
<tr>
<td>W 24 × 162</td>
<td>468</td>
<td>12.7</td>
<td>45.2</td>
<td>1,404</td>
<td>897</td>
<td>10.8</td>
<td>32.4</td>
<td>1,950</td>
<td>1,380</td>
<td>3.05</td>
<td>5.31</td>
<td>30.6</td>
<td>2,870</td>
</tr>
<tr>
<td>W 24 × 146</td>
<td>418</td>
<td>12.5</td>
<td>42.0</td>
<td>1,254</td>
<td>804</td>
<td>10.6</td>
<td>30.6</td>
<td>1,742</td>
<td>1,237</td>
<td>3.01</td>
<td>5.92</td>
<td>33.2</td>
<td>2,590</td>
</tr>
<tr>
<td>W 33 × 118</td>
<td>415</td>
<td>9.67</td>
<td>27.8</td>
<td>1,245</td>
<td>778</td>
<td>8.20</td>
<td>21.7</td>
<td>1,729</td>
<td>1,197</td>
<td>2.32</td>
<td>7.76</td>
<td>54.5</td>
<td>1,510</td>
</tr>
<tr>
<td>W 30 × 124</td>
<td>408</td>
<td>9.29</td>
<td>28.2</td>
<td>1,224</td>
<td>769</td>
<td>7.88</td>
<td>21.5</td>
<td>1,700</td>
<td>1,183</td>
<td>2.23</td>
<td>5.65</td>
<td>46.2</td>
<td>1,930</td>
</tr>
<tr>
<td>W 21 × 147</td>
<td>373</td>
<td>12.3</td>
<td>46.4</td>
<td>1,119</td>
<td>713</td>
<td>10.4</td>
<td>32.8</td>
<td>1,554</td>
<td>1,097</td>
<td>2.95</td>
<td>5.44</td>
<td>26.1</td>
<td>3,140</td>
</tr>
<tr>
<td>W 24 × 131</td>
<td>370</td>
<td>12.4</td>
<td>39.3</td>
<td>1,110</td>
<td>713</td>
<td>10.5</td>
<td>29.1</td>
<td>1,542</td>
<td>1,097</td>
<td>2.97</td>
<td>6.70</td>
<td>35.6</td>
<td>2,330</td>
</tr>
<tr>
<td>W 18 × 158</td>
<td>356</td>
<td>11.4</td>
<td>56.5</td>
<td>1,068</td>
<td>672</td>
<td>9.69</td>
<td>38.0</td>
<td>1,483</td>
<td>1,033</td>
<td>2.74</td>
<td>3.92</td>
<td>19.8</td>
<td>4,410</td>
</tr>
<tr>
<td>W 30 × 108</td>
<td>346</td>
<td>8.96</td>
<td>26.3</td>
<td>1,038</td>
<td>648</td>
<td>7.60</td>
<td>20.3</td>
<td>1,442</td>
<td>997</td>
<td>2.15</td>
<td>6.89</td>
<td>49.6</td>
<td>1,680</td>
</tr>
<tr>
<td>W 27 × 114</td>
<td>343</td>
<td>9.08</td>
<td>28.2</td>
<td>1,029</td>
<td>648</td>
<td>7.71</td>
<td>21.3</td>
<td>1,429</td>
<td>997</td>
<td>2.18</td>
<td>5.41</td>
<td>42.5</td>
<td>2,100</td>
</tr>
<tr>
<td>W 24 × 117</td>
<td>327</td>
<td>12.3</td>
<td>37.1</td>
<td>981</td>
<td>631</td>
<td>10.4</td>
<td>27.9</td>
<td>1,363</td>
<td>970</td>
<td>2.94</td>
<td>7.53</td>
<td>39.2</td>
<td>2,090</td>
</tr>
<tr>
<td>W 21 × 122</td>
<td>307</td>
<td>12.2</td>
<td>41.0</td>
<td>921</td>
<td>592</td>
<td>10.3</td>
<td>29.8</td>
<td>1,279</td>
<td>910</td>
<td>2.92</td>
<td>6.45</td>
<td>31.3</td>
<td>2,630</td>
</tr>
<tr>
<td>W 18 × 130</td>
<td>290</td>
<td>11.3</td>
<td>47.7</td>
<td>870</td>
<td>555</td>
<td>9.55</td>
<td>32.8</td>
<td>1,208</td>
<td>853</td>
<td>2.7</td>
<td>4.65</td>
<td>23.9</td>
<td>3,680</td>
</tr>
<tr>
<td>W 30 × 90</td>
<td>283</td>
<td>8.71</td>
<td>24.8</td>
<td>849</td>
<td>531</td>
<td>7.39</td>
<td>19.4</td>
<td>1,179</td>
<td>817</td>
<td>2.09</td>
<td>8.52</td>
<td>57.5</td>
<td>1,410</td>
</tr>
<tr>
<td>W 24 × 103</td>
<td>280</td>
<td>8.29</td>
<td>27.0</td>
<td>840</td>
<td>531</td>
<td>7.04</td>
<td>20.9</td>
<td>1,167</td>
<td>817</td>
<td>1.99</td>
<td>4.59</td>
<td>39.2</td>
<td>2,390</td>
</tr>
<tr>
<td>W 21 × 94</td>
<td>278</td>
<td>8.83</td>
<td>25.9</td>
<td>834</td>
<td>527</td>
<td>7.50</td>
<td>19.9</td>
<td>1,158</td>
<td>810</td>
<td>2.12</td>
<td>6.70</td>
<td>49.5</td>
<td>1,740</td>
</tr>
<tr>
<td>W 14 × 145</td>
<td>260</td>
<td>16.6</td>
<td>81.6</td>
<td>780</td>
<td>503</td>
<td>14.1</td>
<td>54.7</td>
<td>1,083</td>
<td>773</td>
<td>3.98</td>
<td>7.11</td>
<td>16.8</td>
<td>4,400</td>
</tr>
<tr>
<td>W 12 × 94</td>
<td>254</td>
<td>8.25</td>
<td>25.9</td>
<td>762</td>
<td>481</td>
<td>7.60</td>
<td>10.4</td>
<td>1,058</td>
<td>740</td>
<td>1.98</td>
<td>5.18</td>
<td>41.9</td>
<td>2,180</td>
</tr>
</tbody>
</table>
Beam Design (revisited)

4*. Include self weight for M_{max}
 - it’s dead load
 - and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper
Beam Design (revisited)

6. Evaluate shear stresses - horizontal

- \((V_a \leq V_n / \Omega) \) or \((V_u \leq \phi_v V_n) \)

- rectangles and W’s
 \[
 f_{v-max} = \frac{3V}{2A} \approx \frac{V}{A_{web}}
 \]

- general
 \[
 V_n = 0.6F_{yw} A_w
 \]

- general
 \[
 f_{v-max} = \frac{VQ}{I_b}
 \]
Beam Design (revisited)

7. Provide adequate bearing area at supports

\[
\begin{align*}
(P_a & \leq P_n / \Omega) \\
(P_u & \leq \phi P_n)
\end{align*}
\]
Beam Design (revisited)

8. Evaluate torsion

\[
(f_v \leq F_v)
\]

- circular cross section
 \[
f_v = \frac{T#}{J}
\]
- rectangular
 \[
f_v = \frac{T}{c_1 ab^2}
\]

TABLE 3.1. Coefficients for Rectangular Bars in Torsion

<table>
<thead>
<tr>
<th>a/b</th>
<th>c_1</th>
<th>c_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.208</td>
<td>0.1406</td>
</tr>
<tr>
<td>1.2</td>
<td>0.219</td>
<td>0.1661</td>
</tr>
<tr>
<td>1.5</td>
<td>0.231</td>
<td>0.1958</td>
</tr>
<tr>
<td>2.0</td>
<td>0.246</td>
<td>0.229</td>
</tr>
<tr>
<td>2.5</td>
<td>0.258</td>
<td>0.249</td>
</tr>
<tr>
<td>3.0</td>
<td>0.267</td>
<td>0.263</td>
</tr>
<tr>
<td>4.0</td>
<td>0.282</td>
<td>0.281</td>
</tr>
<tr>
<td>5.0</td>
<td>0.291</td>
<td>0.291</td>
</tr>
<tr>
<td>10.0</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>∞</td>
<td>0.333</td>
<td>0.333</td>
</tr>
</tbody>
</table>
Beam Design (revisited)

9. Evaluate deflections – NO LOAD FACTORS

\[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]
Load Tables & Equivalent Load

- uniformly distributed loads
- equivalent “w”

\[M_{\text{max}} = \frac{w_{\text{equivalent}} L^2}{8} \]

Load for live load deflection limit in RED, total in BLACK
Sloped Beams

- stairs & roofs
- projected live load
- dead load over length

perpendicular load to beam:

$$W_{\perp} = w \cdot \cos \alpha$$

equivalent distributed load:

$$W_{adj.} = \frac{w}{\cos \alpha}$$
Steel Arches and Frames

- solid sections
- or open web

http://nisee.berkeley.edu/godden
Steel Shell and Cable Structures
Approximate Depths

<table>
<thead>
<tr>
<th>Structure</th>
<th>Approximate Depths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decking</td>
<td>L/30–L/50</td>
</tr>
<tr>
<td>Wide flanges</td>
<td>L/18–L/28</td>
</tr>
<tr>
<td>Plate girders</td>
<td>L/15–L/20</td>
</tr>
<tr>
<td>Open-web joists</td>
<td>L/18–L/22</td>
</tr>
<tr>
<td>Fink truss</td>
<td>L/4–L/5</td>
</tr>
<tr>
<td>Howe truss</td>
<td>L/4–L/5</td>
</tr>
<tr>
<td>Bowstring truss</td>
<td>L/6–L/10</td>
</tr>
<tr>
<td>Special truss</td>
<td>L/4–L/15</td>
</tr>
<tr>
<td>Arches</td>
<td>L/3–L/5</td>
</tr>
<tr>
<td>Ribbed domes</td>
<td>L/3–L/5</td>
</tr>
<tr>
<td>Cables</td>
<td>L/5–L/11</td>
</tr>
<tr>
<td>Space frame (column-supported)</td>
<td>L/12–L/20</td>
</tr>
<tr>
<td>Space frame (wall-supported)</td>
<td>L/12–L/20</td>
</tr>
</tbody>
</table>