concrete construction: shear & deflection
Shear in Concrete Beams

- *flexure combines with shear to form diagonal cracks*
 ![Diagram showing diagonal cracks in a concrete beam with flexure and shear forces](image)

- *horizontal reinforcement doesn’t help*

- *stirrups = vertical reinforcement*

 ![Diagram showing vertical stirrups and a single-loop or U stirrup](image)
ACI Shear Values

- V_u is at distance d from face of support
- shear capacity: $V_c = \nu_c \times b_w d$

- where b_w means thickness of web at n.a.

Figure 13.16 Layout for shear stress analysis: ACI Code requirements.
ACI Shear Values

- **shear stress (beams)**

 \[\nu_c = 2\sqrt{f'_c} \]
 \[\phi V_c = \phi 2\sqrt{f'_c} b_w d \]

- **shear strength:**

 \[V_u \leq \phi V_c + \phi V_s \]

- \(V_s \) is strength from stirrup reinforcement

\[\phi = 0.75 \text{ for shear } \]

\(f'_c \) is in \textbf{psi}
Stirrup Reinforcement

- **shear capacity:**
 \[V_s = \frac{A_v f_y d}{s} \]
 - \(A_v \) = area in all legs of stirrups
 - \(s \) = spacing of stirrup

- **may need stirrups when concrete has enough strength!**
Required Stirrup Reinforcement

- **Spacing Limits**

Table 3-8 ACI Provisions for Shear Design*

<table>
<thead>
<tr>
<th>Stirrup spacing, s</th>
<th>$V_u \leq \frac{\phi V_c}{2}$</th>
<th>$\phi V_c \geq V_u > \frac{\phi V_c}{2}$</th>
<th>$V_u > \phi V_c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required area of stirrups, A_v **</td>
<td>none</td>
<td>$\frac{50bws}{f_y}$</td>
<td>$\frac{(V_u - \phi V_c)s}{\phi f_yd}$</td>
</tr>
<tr>
<td>Required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended Minimum†</td>
<td></td>
<td></td>
<td>4 in.</td>
</tr>
<tr>
<td>Maximum‡‡ (ACI 11.5.4)</td>
<td></td>
<td></td>
<td>$\frac{d}{2}$ or 24 in.</td>
</tr>
</tbody>
</table>

| | | | $\frac{d}{2}$ or 24 in. for $(V_u - \phi V_c) \leq 4\sqrt{f'_c} b_w d$ |
| | | | $\frac{d}{4}$ or 12 in. for $(V_u - \phi V_c) > 4\sqrt{f'_c} b_w d$ |

*Members subjected to shear and flexure only; $\phi V_c = \phi 2 \sqrt{f'_c} b_w d$, $\phi = 0.75$ (ACI 11.3.1.1)

**$A_v = 2 \times A_b$ for U stirrups; $f_y \leq 60$ ksi (ACI 11.5.2)

† A practical limit for minimum spacing is $d/4$

‡‡ Maximum spacing based on minimum shear reinforcement ($= A_v f_y / 50b_w$) must also be considered (ACI 11.5.5.3).
Torsional Stress & Strain

• can see torsional stresses & twisting of axi-symmetrical cross sections
 – torque
 – remain plane
 – undistorted
 – rotates

• not true for square sections....
Shear Stress Distribution

- depend on the deformation

- $\phi = \text{angle of twist}$
 - measure

- can prove planar section doesn’t distort
Shearing Strain

- related to ϕ
 \[\gamma = \frac{\rho \phi}{L} \]
- ρ is the radial distance from the centroid to the point under strain
- shear strain varies linearly along the radius: γ_{max} is at outer diameter
Torsional Stress - Strain

- know \(f_v = \tau = G \cdot \gamma \) and \(\gamma = \frac{\rho \phi}{L} \)
- so \(\tau = G \cdot \frac{\rho \phi}{L} \)
- where \(G \) is the Shear Modulus
Torsional Stress - Strain

- from $T = \Sigma \tau (\rho) \Delta A$

- can derive $T = \frac{\tau J}{\rho}$

 - where J is the polar moment of inertia

 - elastic range $\tau = \frac{T \rho}{J}$
Shear Stress

- τ_{max} happens at outer diameter

- combined shear and axial stresses
 - maximum shear stress at 45° “twisted” plane
Shear Strain

- knowing \(\tau = G \cdot \frac{\rho \phi}{L} \) and \(\tau = \frac{T\rho}{J} \)

- solve: \(\phi = \frac{TL}{JG} \)

- composite shafts: \(\phi = \sum \frac{T_i L_i}{J_i G_i} \)
Noncircular Shapes

- Torsion depends on J
- Plane sections don’t remain plane
- τ_{max} is still at outer diameter

$$\tau_{\text{max}} = \frac{T}{c_1 a b^2} \quad \phi = \frac{TL}{c_2 a b^3 G}$$

- Where a is longer side (> b)

<table>
<thead>
<tr>
<th>a/b</th>
<th>c_1</th>
<th>c_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.208</td>
<td>0.1406</td>
</tr>
<tr>
<td>1.2</td>
<td>0.219</td>
<td>0.1661</td>
</tr>
<tr>
<td>1.5</td>
<td>0.231</td>
<td>0.1958</td>
</tr>
<tr>
<td>2.0</td>
<td>0.246</td>
<td>0.229</td>
</tr>
<tr>
<td>2.5</td>
<td>0.258</td>
<td>0.249</td>
</tr>
<tr>
<td>3.0</td>
<td>0.267</td>
<td>0.263</td>
</tr>
<tr>
<td>4.0</td>
<td>0.282</td>
<td>0.281</td>
</tr>
<tr>
<td>5.0</td>
<td>0.291</td>
<td>0.291</td>
</tr>
<tr>
<td>10.0</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>∞</td>
<td>0.333</td>
<td>0.333</td>
</tr>
</tbody>
</table>
Open Thin-Walled Sections

- with very large a/b ratios:

$$\tau_{\text{max}} = \frac{T}{\frac{1}{3}ab^2}$$

$$\phi = \frac{TL}{\frac{1}{3}ab^3G}$$
Shear Flow in Closed Sections

- \(q \) is the internal shear force/unit length

\[
\tau = \frac{T}{2ta}
\]

\[
\phi = \frac{TL}{4ta^2} \sum_i \frac{s_i}{t_i}
\]

- \(a \) is the area bounded by the centerline
- \(s_i \) is the length segment, \(t_i \) is the thickness
Shear Flow in Open Sections

- each segment has proportion of T with respect to torsional rigidity,

\[\tau_{\text{max}} = \frac{T t_{\text{max}}}{\frac{1}{3} \sum b_i t_i^3} \]

- total angle of twist:

\[\phi = \frac{TL}{\frac{1}{3} G \sum b_i t_i^3} \]

- I beams - web is thicker, so τ_{max} is in web
Torsional Shear Stress

- twisting moment
- and beam shear

Design torque may not be reduced because moment redistribution is not possible

Fig. R11.6.3.1—Addition of torsional and shear stresses
Torsional Shear Reinforcement

- closed stirrups
- more longitudinal reinforcement
- area enclosed by shear flow
Development Lengths

- **required to allow steel to yield** (f_y)
- **standard hooks**
 - moment at beam end
- **splices**
 - lapped
 - mechanical connectors
Development Lengths

- l_d, embedment required both sides
- proper cover, spacing:
 - No. 6 or smaller
 \[l_d = \frac{d_b F_y}{25 \sqrt{f'_c}} \] or 12 in. minimum
 - No. 7 or larger
 \[l_d = \frac{d_b F_y}{20 \sqrt{f'_c}} \] or 12 in. minimum
Development Lengths

- hooks
 - bend and extension

\[l_{dh} = \frac{1200d_b}{\sqrt{f'_c}} \]

Figure 9-17: Minimum requirements for 90° bar hooks.

Figure 9-18: Minimum requirements for 180° bar hooks.
Development Lengths

- **bars in compression**

 \[l_d = \frac{0.02 d_b F_y}{\sqrt{f'_{c}}} \leq 0.0003 d_b F_y \]

- **splices**

 - tension minimum is function of \(l_d \) and splice classification
 - compression minimum
 - is function of \(d_b \) and \(F_y \)
Concrete Deflections

• elastic range
 – I transformed
 – \(E_c \) (with \(f'_c \) in psi)
 • normal weight concrete (~ 145 lb/ft\(^3\))
 \[
 E_c = 57,000 \sqrt{f'_c}
 \]
 • concrete between 90 and 160 lb/ft\(^3\)
 \[
 E_c = w_c^{1.5} 33 \sqrt{f'_c}
 \]
• cracked
 – I cracked
 – \(E \) adjusted
Deflection Limits

- relate to whether or not beam supports or is attached to a damageable non-structural element
- need to check service live load and long term deflection against these

<table>
<thead>
<tr>
<th>Deflection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/180</td>
<td>roof systems (typical) – live</td>
</tr>
<tr>
<td>L/240</td>
<td>floor systems (typical) – live + long term</td>
</tr>
<tr>
<td>L/360</td>
<td>supporting plaster – live</td>
</tr>
<tr>
<td>L/480</td>
<td>supporting masonry – live + long term</td>
</tr>
</tbody>
</table>