Lecture 2

ARCHITECTURAL STRUCTURES:
FORM, BEHAVIOR, AND DESIGN
ARCH 331
DR. ANNE NICHOLS
SPRING 2014

structural systems, planning and design

AISC teaching aids: Courtesy of John Hooper, MKA Seattle
Project
Structural Organization

- classifications
 - geometry
 - line-forming
 - surface-forming
 - stiffness
 - rigid
 - flexible
 - one-way or two-way
 - spatial organization and load transfer
 - materials
Structural Components

- bearing walls
- columns
- beams
- flat plates
- trusses
- arches
- shells
- cables
Bearing Walls

(a)
(b)
Bearing Walls

• behavior as “deep beams”
Columns & Walls
Beams & Plates

(a) shorter longer

(b) shorter longer
Beams & Plates

(a)

(b)
Trusses and Shells

- Pitched Pratt truss
- Pitched Howe truss

- Synclastic
- Developable

- (a) Column (point) support
- (b) Inverted pyramid
- (c) Crosshead beams

Systems & Planning 10
Lecture 2

Architectural Structures
ARCH 331
Arches and Cables

(a) Uniform loads (vertically) — arch.

(b) Uniform loads (horizontally) — parabola.

(c) Uniform loads (horizontally) — parabola.

(d) Uniform loads (along the cable length) — catenary.
Building Framing

• Components or Assemblages

(a) Common types of horizontal spanning systems (one, two, and three level systems) used in relation to different types of load-bearing wall and columnar vertical support systems.
Building Framing

Horizontal spanning system

- Decking carries roof loads by bending.
- Decking reactions become forces on beams (which carry loads by bending).
- Beam reactions become forces on trusses.
- Truss reactions cause compressive forces to develop in columns.
- Columns are in compression.
- Column reactions become forces on foundations (which distribute the forces into the earth).
System Selection

- evaluation of alternatives
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed, fire-resistant construction</td>
<td></td>
<td>Inherently fire-resistant construction</td>
</tr>
<tr>
<td>Irregular building form</td>
<td></td>
<td>Simple, site-fabricated systems</td>
</tr>
<tr>
<td>Irregular column placement</td>
<td></td>
<td>Systems without beams in roof or floors</td>
</tr>
<tr>
<td>Minimize floor thickness</td>
<td></td>
<td>Precast-concrete systems without ribs</td>
</tr>
<tr>
<td>Allow for future renovations</td>
<td></td>
<td>Short-span, one-way, easily modified</td>
</tr>
<tr>
<td>Permit construction in poor weather</td>
<td></td>
<td>Quickly erected; avoid site-cast concrete</td>
</tr>
<tr>
<td>Minimize off-site fabrication time</td>
<td></td>
<td>Easily formed or built on site</td>
</tr>
<tr>
<td>Minimize on-site erection time</td>
<td></td>
<td>Highly prefabricated; modular components</td>
</tr>
<tr>
<td>Minimize low-rise construction time</td>
<td></td>
<td>Lightweight, easily formed or prefabricated</td>
</tr>
<tr>
<td>Minimize medium-rise construction time</td>
<td></td>
<td>Precast, site-cast concrete; steel frames</td>
</tr>
<tr>
<td>Minimize high-rise construction time</td>
<td></td>
<td>Strong; prefabricated; lightweight</td>
</tr>
<tr>
<td>Minimize shear walls or diagonal bracing</td>
<td></td>
<td>Capable of forming rigid joints</td>
</tr>
<tr>
<td>Minimize dead load on foundations</td>
<td></td>
<td>Lightweight, short-span systems</td>
</tr>
<tr>
<td>Minimize damage due to foundation settlement</td>
<td></td>
<td>Systems without rigid joints</td>
</tr>
<tr>
<td>Minimize the number of separate trades on job</td>
<td></td>
<td>Multipurpose components</td>
</tr>
<tr>
<td>Provide concealed space for mech. services</td>
<td></td>
<td>Systems that inherently provide voids</td>
</tr>
<tr>
<td>Minimize the number of supports</td>
<td></td>
<td>Two-way, long-span systems</td>
</tr>
<tr>
<td>Long spans</td>
<td></td>
<td>Long-span systems</td>
</tr>
</tbody>
</table>
Structural Design Criteria

- components stay together
- structure acts as whole to be stable
 - resist sliding
 - resist overturning
 - resist twisting and distortion
- internal stability
 - interconnectedness
- strength & stiffness
Structural Design Sequences

- **first-order design**
 - structural type and organization
 - design intent
 - contextual or programmatic

- **second-order**
 - structural strategies
 - material choice
 - structural systems

- **third-order**
 - member shaping & sizing
Systems by Materials

- Wood
- Steel
- Concrete
- Masonry
- Composite
Timber Construction

- all-wood framing systems
 - studs, beams, floor diaphragms, shearwalls
 - glulam arches & frames
 - post & beams
 - trusses

- composite construction
 - masonry shear walls
 - concrete
 - steel
Timber Construction

- studs, beams
- floor diaphragms & shear walls
Timber Construction

- glulam arches & frames
 - manufactured or custom shapes
 - glue laminated
 - bigger members
Timber Construction

• post & beam

• trusses
Timber Construction

• composite construction
Steel

- cast iron – wrought iron - steel
- cables
- columns
- beams
- trusses
- frames

http://nisee.berkeley.edu/godden
Steel Construction

- standard rolled shapes
- open web joists
- plate girders
- decking
Steel Construction

- welding
- bolts

Connection at web only (flanges not connected)

Flanges connected (bolted web connection to facilitate erection only)

Shear Connection

Moment Connection

Connection at web only (flanges not connected)
Steel Construction

- fire proofing
 - cementicious spray
 - encasement in gypsum
 - intumescent – expands with heat
 - sprinkler system
Concrete

- columns
- beams
- slabs
- domes
- footings

http://nisee.berkeley.edu/godden
Concrete Construction

- cast-in-place
- tilt-up
- prestressing
- post-tensioning

![Concrete Construction Examples](http://nisee.berkeley.edu/godden)
Concrete Floor Systems

- types & spanning direction

- One-Way Slab (with beams)
- Two-Way Slab (with beams)
- Two-Way Slab (with dropped panels)
- Flat Plate

Heavily reinforced to resist shear around columns
Concrete Floor Systems

(a) ONE-WAY CONCRETE JOISTS (b) PRECAST DOUBLE-TEES

(c) WOOD JOISTS (d) WAFFLE SLAB (two-way joists)
Masonry

- columns
- beams
- arches
- walls
- footings
Grids and Patterns

- often adopted early in design
 - give order
 - cellular, ex.
- vertical and horizontal
- square and rectangular
 - single-cell
 - aggregated bays
Grids and Patterns

(a) Square column grid.
Systems

- total of components
- behavior of whole
- classifications
 - one-way
 - two-way
 - tubes
 - braced
 - unbraced
One-Way Systems

- *horizontal vs. vertical*
Two-Way Systems

• spanning system less obvious

• horizontal
 – plates
 – slabs
 – space frames

• vertical
 – columns
 – walls

(i) Space-frame system on walls with cantilevers.
Two-Way Systems

(a) Flat-plate system.
(b) Flat-slab system.
(c) Two-way beam-and-slab system.
(d) Two-way ribbed system (waffle slab).
(e) Two-way ribbed system with surrounding beams.
(f) Two-way long-span beam-and-slab system.
Roof Shapes

- coincide
- within
Tubes & Cores

- **stiffness**

(c) Suspended structure, reinforced concrete core.

(c) Tube structure. The exterior columns are closely spaced. Horizontal spandrel beams are rigidly connected to columns to form an exterior tube, which carries all lateral forces and some gravity forces. Interior columns carry only vertical forces.
Span Lengths

- crucial in selection of system
- maximum spans on charts aren’t absolute limits, but usual maximums
- increase \(L \), increase depth\(^2 \) required (ex. cantilever)
- deflections depend on \(L \)
Approximate Depths

<table>
<thead>
<tr>
<th>System</th>
<th>Minimum span (L/25)</th>
<th>Maximum span (L/25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slabs (poured in place)</td>
<td>L/25</td>
<td>L/125</td>
</tr>
<tr>
<td>Cantilever L/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beams (poured in place)</td>
<td>L/20</td>
<td>L/26</td>
</tr>
<tr>
<td>Cantilever L/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pan joist system (poured in place)</td>
<td>L/20–L/25</td>
<td></td>
</tr>
<tr>
<td>Folded plate (poured in place)</td>
<td>L/8–L/15</td>
<td></td>
</tr>
<tr>
<td>Barrel shell (poured in place)</td>
<td>L/8–L/15</td>
<td></td>
</tr>
<tr>
<td>Planks (precast)</td>
<td>L/25–L/40</td>
<td></td>
</tr>
<tr>
<td>Channels (precast)</td>
<td>L/20–L/28</td>
<td></td>
</tr>
<tr>
<td>Tees (precast)</td>
<td>L/20–L/28</td>
<td></td>
</tr>
<tr>
<td>Flat plate (poured in place)</td>
<td>L/30–L/40</td>
<td></td>
</tr>
<tr>
<td>Flat slab (poured in place)</td>
<td>L/30–L/40</td>
<td></td>
</tr>
<tr>
<td>Two-way beam and slab (poured in place)</td>
<td>L/30–L/40</td>
<td></td>
</tr>
<tr>
<td>Waffle slab (poured in place)</td>
<td>L/23–L/35</td>
<td></td>
</tr>
<tr>
<td>Dome (poured in place)</td>
<td>L/4–L/8</td>
<td></td>
</tr>
</tbody>
</table>
Loading Type and Structure Type

- **light uniform loads**
 - surface forming elements
 - those that pick up first load dictate spacing of other elements

- **heavy concentrated loads**
 - member design unique

- **distributed vs. concentrated structural strategies**
 - large beam vs. many smaller ones
Design Issues

- lateral stability – all directions

Diagram:
- Rigid Frame
- Braced Frame
- Shear Wall
Design Issues

• configuration

Stabilizing elements may be placed within the interior or at the perimeter of a building.

Stabilizing elements should be arranged in a balanced fashion.

Rigid frame structures require no additional bracing or shear walls, as shown in this elevation and plan.

The locations of braced frames or shear walls must be considered in relation to the elevation and plan of the building.
Design Issues

• *vertical load resistance*

WALL AND SLAB SYSTEMS
(shown from below)

COLUMN AND BEAM SYSTEMS
(shown from below)

walls
columns
Design Issues

- lateral load resistance

Shear walls may be arranged in a box form to resist lateral forces from all directions.

When combined with other stabilizing mechanisms, shear walls may be arranged so as to resist forces in only one direction of a building.
Design Issues

• lateral load resistance

Shear walls are commonly used with column and slab systems. In this elevation and plan, the shear walls are shown incorporated into a pair of vertical cores.

Rigid frame structures require no additional bracing or shear walls, as shown in this elevation and plan.

The locations of braced frames or shear walls must be considered in relation to the elevation and plan of the building.
Design Issues

• multi-story
 – cores, tubes, braced frames
Design Issues

- **multi-story**
 - avoid discontinuities
 - vertically
 - horizontally

Transfer beams or trusses may be used to interrupt vertical loadbearing elements where necessary.

Discrete building masses should be structurally independent. Inherently unstable building masses should be avoided.

Discontinuities in the stiffness of structures at different levels should be avoided, or additional stabilizing elements may be required.
Foundation Influence

- type may dictate fit
 - piles vs. mats vs. spread
 - capacity of soil to sustain loads
 - high capacity – smaller area of bearing needing and can spread out
 - low capacity – multiple contacts and big distribution areas
Grid Dependency on Floor Height

- wide grid = deep beams
 - increased building height
 - heavier
 - foundation design
- codes and zoning may limit
- utilize depth for mechanical
Large Spaces

- ex. auditoriums, gyms, ballrooms
- choices
 - separate two systems completely and connect along edges
 - embed in finer grid
 - staggered truss
Meeting of Grids

- common to use more than one grid
- intersection important structurally
- can use different structural materials
 - need to understand their properties
 - mechanical
 - thermal
Meeting of Grids

- horizontal choices

(a) Random intersection.
(b) Alignment of patterns.
(c) Alignment of patterns.
(d) Mediating space.
Meeting of Grids

- vertical choices

(a) Alignment of grids.

(b) Bypassing of grids.
Other Conditions

• circulation

• building service systems
 – one-way systems have space for parallel runs
 – trusses allow for transverse penetration
 – pass beneath or interstitial floors
 • for complex or extensive services or flexibility
Other Conditions

- poking holes for member services
 - horizontal
 - need to consider area removed, where removed, and importance to shear or bending
 - vertical
 - requires framing at edges
 - can cluster openings to eliminate a bay
 - double systems
Fire Safety & Structures

• fire safety requirements can impact structural selection

• construction types
 – light
 • residential
 • wood-frame or unprotected metal
 – medium
 • masonry
 – heavy
 • protected steel or reinforced concrete
Fire Safety & Structures

- degree of occupancy hazards
- building heights
- maximum floor areas between fire wall divisions
 - can impact load bearing wall location
Fire Safety & Structures

• resistance ratings by failure type
 – transmission failure
 • fire or gasses move
 – structural failure
 • high temperatures reduce strength
 – failure when subjected to water spray
 • necessary strength

• ratings do not pertain to usefulness of structure after a fire