Architectural Structures: Form, Behavior, and Design
ARCH 331
Dr. Anne Nichols
Spring 2014

lecture four

Point Equilibrium and Planar Trusses

http://nisee.berkeley.edu/godden
Equilibrium

- balanced
- steady
- resultant of forces on a particle is 0
Equilibrium on a Point

- analytically

\[R_x = \sum F_x = 0 \]
\[R_y = \sum F_y = 0 \]

- Newton convinces us it will stay at rest
Equilibrium on a Point

- collinear force system
 - ex: cables

\[\sum F_{\text{in-line}} = 0 \]

\[
\begin{align*}
R_x &= \sum F_x = 0 \\
R_y &= \sum F_y = 0
\end{align*}
\]
Equilibrium on a Point

- concurrent force system
 - ex: cables

\[
R_x = \sum F_x = 0
\]

\[
R_y = \sum F_y = 0
\]
Free Body Diagram

- FBD (sketch)
- tool to see all forces on a body or a point including
 - external forces
 - weights
 - force reactions
 - internal forces
Free Body Diagram

- determine point
- **FREE** it from:
 - ground
 - supports & connections
- draw all external forces acting **ON** the body
 - reactions (supporting forces)
 - applied forces
 - gravity

FBD of concurrent point B.

Sign suspended from a strut and cable.
Free Body Diagram

• sketch FBD with relevant geometry
• resolve each force into components
 – known & unknown angles – name them
 – known & unknown forces – name them
• are any forces related to other forces?
• for the unknowns
• write only as many equilibrium equations as needed
• solve up to 2 equations
Free Body Diagram

- solve equations
 - most times 1 unknown easily solved
 - plug into other equation(s)

- common to have unknowns of
 - force magnitudes
 - force angles
Truss Structures

- ancient (?) wood
 - Romans 500 B.C.
- Renaissance revival
- 1800’s analysis
- efficient
Truss Structures

– analogous to cables and struts
Truss Structures

- comprised of straight members
- geometry with triangles is stable
- loads applied only at pin joints

http://nisee.berkeley.edu/godden
Truss Structures

• 2 force members
 – forces in line, equal and opposite
 – compression
 – tension

• 3 members connected by 3 joints

• 2 more members need 1 more joint
 \[b = 2n - 3 \]
Truss Structures

- compression and tension
Truss Structures

- statically determinate
- indeterminate
- unstable

\[b = 21 \quad n = 12 \quad 2n - 3 = 2(12) - 3 = 21 \]
(a) Determinate.

\[b = 16 \quad n = 10 \quad b = 16 < 2(10) - 3 = 17 \]
(Too few members—square panel is unstable)
(c) Unstable.

\[b = 18 \quad n = 10 \quad b = 18 > 2(10) - 3 = 17 \]
(Too many members)
(b) Indeterminate.
Trusses

- common designs

- [Diagram of common truss designs including King post, pitched Pratt truss, pitched Howe truss, pitched Fink truss, parallel chord Pratt truss, parallel chord Howe truss, and crossed-diagonal truss]
Trusses

- common designs

![Diagram of common truss designs](image)
Trusses

- **uses**
 - roofs & canopies
 - long spans
 - lateral bracing
Truss Connections

- “pins”

Figure 4.8: Truss joints.

http://nisee.berkeley.edu/godden
Sainsbury Center, Foster 1978
two pin-connection supports (typical of all trusses)

see detail

third pin connection at end trusses only (makes truss and supporting columns behave as a rigid frame to minimize movement around end glazing)

tubular steel prism columns are cantilevered from foundation (rigid base connection)

prism (3-sided) roof trusses
tubular cross-bracing between columns
Truss Analysis

• visualize compression and tension from deformed shape

http://nisee.berkeley.edu/godden
Truss Analysis

- Method of Joints
- Graphical Methods
- Method of Sections

- all rely on equilibrium
 - of bodies
 - internal equilibrium
Method of Joints

- isolate each joint
- enforce equilibrium in F_x and F_y
- can find all forces

- long
- easy to mess up
Joint Cases

- **two bodies connected**

![Diagram showing joint cases]

- Two bodies connected, equal force, equal and 0 force.
Joint Cases

- three bodies with two in line

![Diagram showing joint cases in architectural structures]

- Three bodies with two in line, as shown in the diagram.
Joint Cases

- crossed
Tools – Multiframe

- in computer lab
Tools – Multiframe

- **frame window**
 - define truss members
 - or pre-defined truss
 - select points, assign supports
 - select members, assign section & assign pin ends

- **load window**
 - select points, add point load
Tools – Multiframe

- to run analysis choose
 - Analyze menu
 - Linear
- plot
 - choose options
- results
 - choose options