beam sections - geometric properties
Center of Gravity

- location of equivalent weight
- determined with calculus

\[\sum \Delta W = \int dW \]
Center of Gravity

• “average” x & y from moment

\[
\sum M_y = \sum_{i=1}^{n} x_i \Delta W_i = \bar{x}W \quad \Rightarrow \quad \bar{x} = \frac{\sum (x \Delta W)}{W}
\]

“bar” means average

\[
\sum M_x = \sum_{i=1}^{n} y_i \Delta W_i = \bar{y}W \quad \Rightarrow \quad \bar{y} = \frac{\sum (y \Delta W)}{W}
\]
Centroid

• “average” x & y of an area
• for a volume of constant thickness
 – $\Delta W = \gamma t \Delta A$ where γ is weight/volume
 – center of gravity = centroid of area

$$\bar{x} = \frac{\sum(x\Delta A)}{A}$$

$$\bar{y} = \frac{\sum(y\Delta A)}{A}$$
Centroid

• for a line, sum up length

\[
\bar{x} = \frac{\sum(x \Delta L)}{L}
\]

\[
\bar{y} = \frac{\sum(y \Delta L)}{L}
\]
1st Moment Area

- math concept
- the moment of an area about an axis

\[Q_x = \bar{y}A \]
\[Q_y = \bar{x}A \]
Symmetric Areas

- symmetric about an axis
- symmetric about a center point
- mirrored symmetry
Composite Areas

- *made up of basic shapes*
- *areas can be negative*
- *(centroids can be negative for any area)*
Basic Procedure

1. Draw reference origin (if not given)
2. Divide into basic shapes (+/-)
3. Label shapes
4. Draw table
5. Fill in table
6. Sum necessary columns
7. Calculate \(\hat{x} \) and \(\hat{y} \)
Area Centroids

- **Table 7.1 – pg. 242**

Centroids of Common Shapes of Areas and Lines

<table>
<thead>
<tr>
<th>Shape</th>
<th>\bar{x}</th>
<th>\bar{y}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangular area</td>
<td>$\frac{b}{3}$</td>
<td>$\frac{h}{3}$</td>
</tr>
<tr>
<td>Quarter-circular area</td>
<td>$\frac{4r}{3\pi}$</td>
<td>$\frac{4r}{3\pi}$</td>
</tr>
<tr>
<td>Semicircular area</td>
<td>0</td>
<td>$\frac{4r}{3\pi}$</td>
</tr>
<tr>
<td>Semiparabolic area</td>
<td>$\frac{3u}{8}$</td>
<td>$\frac{3h}{5}$</td>
</tr>
<tr>
<td>Parabolic area</td>
<td>0</td>
<td>$\frac{3h}{5}$</td>
</tr>
</tbody>
</table>

- Right triangle only

Sections 10
Lecture 9
Architectural Structures
ARCH 331
S2014abn
Moments of Inertia

• 2nd moment area
 – math concept
 – area \times (distance)^2

• need for behavior of
 – beams
 – columns
Moment of Inertia

- about any reference axis
- can be negative

\[I_y = \int x^2 \, dA \]

\[I_x = \int y^2 \, dA \]

- resistance to bending and buckling
Moment of Inertia

- same area moved away a distance
 - larger I
Polar Moment of Inertia

- for roundish shapes
- uses polar coordinates \((r \text{ and } \theta)\)
- resistance to twisting

\[J_o = \int r^2 \, dA \]
Radius of Gyration

- measure of inertia with respect to area

$$r_x = \sqrt{\frac{I_x}{A}}$$
Parallel Axis Theorem

- can find composite I once composite centroid is known (basic shapes)

\[I_x = I_{cx} + Ad y^2 \]
\[= \bar{I}_x + Ad y^2 \]

\[I = \sum \bar{I} + \sum Ad^2 \]

\[\bar{I} = I - Ad^2 \]
Basic Procedure

1. Draw reference origin (if not given)
2. Divide into basic shapes (+/-)
3. Label shapes
4. Draw table with A, \bar{x}, $\bar{x}A$, \bar{y}, $\bar{y}A$, \bar{I}'s, d's, and Ad^2's
5. Fill in table and get \hat{x} and \hat{y} for composite
6. Sum necessary columns
7. Sum \bar{I}'s and Ad^2's

\[
\begin{align*}
 d_x & = \hat{x} - \bar{x} \\
 d_y & = \hat{y} - \bar{y}
\end{align*}
\]
Area Moments of Inertia

- Table 7.2 – pg. 252: (bars refer to centroid)
 - x, y
 - x', y'
 - C

\[I_x = \frac{1}{12}bh^3 \]
\[I_y = \frac{1}{12}b'h'^3 \]
\[I_x = \frac{1}{36}bh^3 \]
\[I_y = \frac{1}{12}b^3h \]
\[J_C = \frac{1}{12}bh(b^2 + h^2) \]
\[J_x = \frac{1}{3} \pi r^4 \]
\[J_y = \frac{1}{4} \pi r^4 \]