Compression Members (revisited)

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for stability
 - ability to support a specified load without sudden or unacceptable deformations

Effect of Length (revisited)

- long & slender
- short & stubby

Critical Stresses (revisited)

- when a column gets stubby, crushing will limit the load
- real world has loads with eccentricity
Bracing (revisited)

- bracing affects shape of buckle in one direction
- both should be checked!

Wood Columns

- slenderness ratio = \(L/d_{\text{min}} \)
 - \(d_{\text{1}} \) = smallest dimension
 - \(l/e/d \leq 50 \) (max)

\[
f_c = \frac{P}{A} \leq F'_c
\]

- where \(F'_c \) is the allowable compressive strength parallel to the grain
- bracing common
- posts, round, built-up

Allowable Wood Stress

\[
F'_c = F_c \left(C_D \right) \left(C_M \right) \left(C_t \right) \left(C_F \right) \left(C_p \right)
\]

- where:
 - \(F_c \) = compressive strength parallel to grain
 - \(C_D \) = load duration factor
 - \(C_M \) = wet service factor (1.0 dry)
 - \(C_t \) = temperature factor
 - \(C_F \) = size factor
 - \(C_p \) = column stability factor

Table 10.3

Strength Factors

- wood properties and load duration, \(C_D \)
 - short duration
 - higher loads
 - normal duration
 - > 10 years
- stability, \(C_p \)
 - combination curve - tables

\[
F'_c = F_c C_p = \left(F_c C_D \right) C_p
\]

http://www.swst.org/teach/aset/struct1.html
Procedure for Analysis

1. calculate \(L_e/d_{\text{min}} \)
 - KL/d each axis, choose largest
2. obtain \(F'_c \)
 - compute \(F_{cE} = \frac{K_{cE}E}{(L_e/d)^2} \)
 - \(K_{cE} = 0.3 \) sawn
 - \(K_{cE} = 0.418 \) glu-lam
3. compute \(F_c^* \approx F_cC_D \)
4. calculate \(F_{cE}/F_c^* \) and get \(C_p \) (Table 14)
5. calculate \(F'_c = F_c^*C_p \)

Procedure for Analysis (cont’d)

6. compute \(P_{\text{allowable}} = F'_cA \)
 - or find \(f_{\text{actual}} = P/A \)
7. is \(P \leq P_{\text{allowable}} \) ? (or \(f_{\text{actual}} \leq F'_c \)?)
 - yes: OK
 - no: overstressed & no good
Procedure for Design

1. guess a size (pick a section)
2. calculate L_e/d_{min}
 - KL/d each axis, choose largest
3. obtain F'_c
 - compute $F_{cE} = \frac{K_{cE}E}{(L_e/d)^2}$
 - $K_{cE} = 0.3$ sawn
 - $K_{cE} = 0.418$ glu-lam
4. compute $F_{c}^* \approx F_{c} C_D$
5. calculate F_{cE}/F_{c}^* and get C_p (Table 14)

Procedure for Design (cont’d)

6. compute $F'_c = F_{c}^* C_p$
7. compute $P_{\text{allowable}} = F'_c A$
 - or find $f_{\text{actual}} = P/A$
8. is $P \leq P_{\text{allowable}}$? (or $f_{\text{actual}} \leq F'_c$?)
 - yes: OK
 - no: pick a bigger section and go back to step 2.

Timber Construction by Code

• light-frame
 - light loads
 - 2x’s
 - floor joists – 2x6, 2x8, 2x10, 2x12 typical at spacings of 12”, 16”, 24”
 - normal spans of 20-25 ft or 6-7.5 m
 - plywood spans between joists
 - stud or load-bearing masonry walls
 - limited to around 3 stories – fire safety

Design of Columns with Bending

• satisfy
 - strength
 - stability
• pick
 - section
Design

- Wood

\[
\left(\frac{f_c}{F'_c} \right)^2 + \frac{f_{bx}}{F'_{bx}} \left(1 - \frac{f_c}{F'_{cEx}} \right) \leq 1.0
\]

[] term – magnification factor for P-\Delta

\[F'_{bx} \] – allowable bending strength

Design Steps Knowing Loads

1. assume limiting stress
 - buckling, axial stress, combined stress
2. solve for r, A or S
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok

Laminated Timber Arches

- two & three hinged arches
- bent to wide range of curves
- bending and compression
- residual stress from laminating, \(C_c \)

Laminated Arch Design

- radius of curvature, R, limited by lam thickness, t
 - \(R = 100t \) – southern pine & hardwoods
 - \(R = 125t \) – softwood
- \(r = \text{radius to inside face of laminations} \)
 - \(C_c = 1 - 2000 \left(\frac{t}{r} \right)^2 \)
 - \(F'_b = F_b(C_FC_d) \)