Steel Beam Design

- American Institute of Steel Construction
 - Manual of Steel Construction
 - ASD & LRFD
 - combined in 2005

Steel Materials

- smelt iron ore
- add alloying elements
- heat treatments
- iron, carbon
- microstructure

Steel Materials

- cast into billets
- hot rolled
- cold formed
- residual stress
- corrosion-resistant “weathering” steels
- stainless
Steel Materials

- steel grades
 - ASTM A36 – carbon
 - plates, angles
 - $F_y = 36$ ksi & $F_u = 58$ ksi
 - ASTM A572 – high strength low-alloy
 - some beams
 - $F_y = 60$ ksi & $F_u = 75$ ksi
 - ASTM A992 – for building framing
 - most beams
 - $F_y = 50$ ksi & $F_u = 65$ ksi

Steel Properties

- high strength to weight ratio
- elastic limit – yield (F_y)
- inelastic – plastic
- ultimate strength (F_u)
- ductile
- strength sensitive to temperature
- can corrode
- fatigue

Structural Steel

- standard rolled shapes (W, C, L, T)
- open web joists
- plate girders
- decking

Steel Construction

- welding
- bolts
Steel Construction

- fire proofing
 - cementicious spray
 - encasement in gypsum
 - intumescent – expands with heat
 - sprinkler system

Unified Steel Design

- ASD
 \[R_a \leq \frac{R_n}{\Omega} \]
 - bending (braced) \(\Omega = 1.67 \)
 - bending (unbraced*) \(\Omega = 1.67 \)
 - shear \(\Omega = 1.5 \) or 1.67
 - shear (bolts & welds) \(\Omega = 2.00 \)
 - shear (welds) \(\Omega = 2.00 \)

 * flanges in compression can buckle

Unified Steel Design

- braced vs. unbraced

LRFD

- loads on structures are
 - not constant
 - can be more influential on failure
 - happen more or less often
 - UNCERTAINTY

\[R_u = \gamma_D R_D + \gamma_L R_L \leq \phi R_n \]

\(\phi \) - resistance factor
\(\gamma \) - load factor for (D)ead & (L)ive load
LRFD Steel Beam Design

- limit state is yielding all across section
- outside elastic range
- load factors & resistance factors

\[\sigma_y = 50 \text{ksi} \]
\[\epsilon_y = 0.001724 \]

LRFD Load Combinations

- 1.4(D + F)
- 1.2(D + F + T) + 1.6(L + H) + 0.5(L_r or S or R)
- 1.2D + 1.6(L_r or S or R) + (L or 0.8W)
- 1.2D + 1.6W + L + 0.5(L_r or S or R)
- 1.2D + 1.0E + L + 0.2S
- 0.9D + 1.6W + 1.6H
- 0.9D + 1.0E + 1.6H

Beam Design Criteria (revisited)

- strength design
 - bending stresses predominate
 - shear stresses occur
- serviceability
 - limit deflection
 - stability
- superpositioning
 - use of beam charts
 - elastic range only!
 - “add” moment diagrams
 - “add” deflection CURVES (not maximums)

Steel Beams

- lateral stability - bracing
- local buckling – stiffen, or bigger I_y
Local Buckling

- steel I beams
- flange
 - buckle in direction of smaller radius of gyration
- web
 - force
 - “crippling”

Shear in Web

- panels in plate girders or webs with large shear
- buckling in compression direction
- add stiffeners

Shear in Web

- plate girders and stiffeners

Figure 2-5. Flange Local Bucking Limit State (Breuel, L. N., Christopher H. W., 1994)

Figure 2-7. Web Local Bucking Limit State (NAT Project)
Steel Beams

• bearing
 – provide adequate area
 – prevent local yield of flange and web

LRFD - Flexure

\[\Sigma \gamma_i R_i = M_u \leq \phi_b M_n = 0.9 F_y Z \]

- \(M_u \) - maximum moment
- \(\phi_b \) - resistance factor for bending = 0.9
- \(M_n \) - nominal moment (ultimate capacity)
- \(F_y \) - yield strength of the steel
- \(Z \) - plastic section modulus*

Internal Moments - at yield

• material hasn’t failed

\[M_y = \frac{I}{c} f_y = \frac{bh^2}{6} f_y \]

\[= \frac{b(2c)^2}{6} f_y = \frac{2bc^2}{3} f_y \]

Internal Moments - ALL at yield

• all parts reach yield
• plastic hinge forms
• ultimate moment
• \(A_{tension} = A_{compression} \)

\[M_p = bc^2 f_y = \frac{3}{2} M_y \]
n.a. of Section at Plastic Hinge

- cannot guarantee at centroid
- \(f_y A_1 = f_y A_2 \)
- moment found from yield stress times moment area

\[M_p = f_y A_1 d = f_y \sum n.A_i d_i \]

Plastic Hinge Development

Plastic Hinge Examples

- stability can be effected

Plastic Section Modulus

- shape factor, \(k \) = \(\frac{M_p}{M_y} \)
 - \(\approx 3/2 \) for a rectangle
- plastic modulus, \(Z \)
 - \(k = \frac{Z}{S} \)
 - \(Z = \frac{M_p}{f_y} \)
LRFD – Shear (compact shapes)

\[\Sigma \gamma_i R_i = V_u \leq \phi_v V_n = 1.0(0.6F_{yw}A_w) \]

- \(V_u \) - maximum shear
- \(\phi_v \) - resistance factor for shear = 1.0
- \(V_n \) - nominal shear
- \(F_{yw} \) - yield strength of the steel in the web
- \(A_w \) - area of the web = \(t_w d \)

LRFD - Flexure Design

- limit states for beam failure
 1. yielding \(L_p = 1.76r_y \sqrt{\frac{F_y}{E}} \)
 2. lateral-torsional buckling*
 3. flange local buckling
 4. web local buckling
- minimum \(M_n \) governs

\[\Sigma \gamma_i R_i = M_u \leq \phi_b M_n \]

Compact Sections

- plastic moment can form before any buckling
- criteria

Lateral Torsional Buckling

\[M_n = C_b \left[\text{moment based on lateral buckling} \right] \leq M_p \]

\[C_b = \frac{12.5M_{\text{max}}}{2.5M_{\text{max}} + 3M_A + 4M_B + 3M_C} \]

- \(M_{\text{max}} \) - \(|\text{max moment}|, \text{unbraced segment}\)
- \(M_A \) - \(|\text{moment}|, \) 1/4 point
- \(M_B \) - \(|\text{moment}|, \) center point
- \(M_C \) - \(|\text{moment}|, \) 3/4 point
Beam Design Charts

Charts & Deflections

• beam charts
 – solid line is most economical
 – dashed indicates there is another more economical section
 – self weight is NOT included in M_n

• deflections
 – no factors are applied to the loads
 – often governs the design

Design Procedure (revisited)

1. Know unbraced length, material, design method (Ω, ϕ)

2. Draw V & M, finding M_{max}

3. Calculate $Z_{req'd}$

 \[M_a \leq M_n / \Omega \]

 \[M_u \leq \phi_b M_n \]

4. Choose (economical) section from section or beam capacity charts

Beam Charts by S_x (Appendix A)

Table 31. Listing of W Shapes in Descending Order of S_x for Beam Design.
Beam Design (revisited)

4. Include self weight for M_{max}
 - it's dead load
 - and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper

6. Evaluate shear stresses - horizontal
 - $(V_a \leq V_n/\omega)$ or $(V_u \leq \phi V_n)$
 - rectangles and W's
 $$ f_{v_{\text{max}}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}} $$
 $$ V_n = 0.6 F_{yw} A_w $$
 - general
 $$ f_{v_{\text{max}}} = \frac{VQ}{I_b} $$

Beam Design (revisited)

7. Provide adequate bearing area at supports
 \[P_a \leq P_n/\omega \]
 \[P_u \leq \phi P_n \]
Beam Design (revisited)

8. Evaluate torsion

\(f_v \leq F_v \)

- circular cross section
 \(f_v = \frac{T \rho}{J} \)
- rectangular
 \(f_v = \frac{T}{c_1 ab^2} \)

Load Tables & Equivalent Load

- uniformly distributed loads
- equivalent "w"
 \(M_{\text{max}} = \frac{W_{\text{equivalent}} L^2}{8} \)

Sloped Beams

- stairs & roofs
- projected live load
- dead load over length
- perpendicular load to beam:
 \(w_\perp = w \cdot \cos \alpha \)
- equivalent distributed load:
 \(w_{\text{adj.}} = \frac{w}{\cos \alpha} \)
Steel Arches and Frames

• solid sections
 or open web

Steel Shell and Cable Structures

Approximate Depths

http://nisee.berkeley.edu/godden