steel construction: columns & tension members

Design Methods (revisited)
- know
 - loads or lengths
- select
 - section or load
 - adequate for strength and no buckling

Allowable Stress Design (ASD)
- AICS 9th ed
 \[F_a = \frac{f_{critical}}{F.S.} = \frac{12\pi^2E}{23(Kl/r)^2} \]
 - slenderness ratio \(\frac{Kl}{r} \)
 - for \(kl/r \geq C_c \):
 \[F_a = \frac{f_{critical}}{F.S.} = \frac{12\pi^2E}{23(Kl/r)^2} \]
 - with \(F_y = 36 \text{ ksi} \)
 \[= 126.1 \]
 - with \(F_y = 50 \text{ ksi} \)
 \[= 107.0 \]
C_c and Euler’s Formula

- **Kl/r < C_c**
 - short and stubby
 - parabolic transition

- **Kl/r > C_c**
 - Euler’s relationship
 - < 200 preferred

\[C_c = \sqrt{\frac{2\pi^2 E}{F_y}} \]

Short / Intermediate

- **L_e/r < C_c**

\[F_a = 1 - \left(\frac{Kl/r}{2C_c^2} \right)^2 \frac{F_y}{F.S.} \]

- where

\[F.S. = \frac{5}{3} + \frac{3(Kl/r)}{8C_c} - \frac{(Kl/r)^3}{8C_c^3} \]

Unified Design

- limit states for failure

\[P_a \leq \frac{P_n}{\phi_c} \]

\[\phi_c = 0.90 \quad P_n = F_{cr} A_g \quad P_u \leq \phi_c P_n \]

1. **yielding**

\[\frac{KL}{r} \leq 4.71 \sqrt{\frac{E}{F}} \quad \text{or} \quad F_e \geq 0.44F_y \]

2. **buckling**

\[\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F}} \quad \text{or} \quad F_e < 0.44F_y \]

\[F_e \text{ – elastic buckling stress (Euler)} \]
Unified Design

- \(P_n = F_{cr} A_g \)
 - for \(\frac{KL}{r} \leq 4.71 \sqrt{\frac{E}{F_y}} F_{cr} = \left[\frac{0.658}{F_e} \right] F_y \)
 - for \(\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}} F_{cr} = 0.877 F_e \)
 - where \(F_e = \frac{\pi^2 E}{(KL/r)^2} \)

Procedure for Analysis

1. calculate \(KL/r \)
 - biggest of \(KL/r \) with respect to \(x \) axes and \(y \) axis
2. find \(F_a \) or \(F_{cr} \) from appropriate equation
 - tables are available
3. compute \(P_{\text{allowable}} = F_a A \) or \(P_n = F_{cr} A_g \)
 - or find \(f_{\text{actual}} = P/A \)
4. is \(P \leq P_{\text{allowable}} \) (or \(P_u \leq \phi P_n \)?)
 - yes: ok
 - no: insufficient capacity and no good

Procedure for Design

1. guess a size (pick a section)
2. calculate \(KL/r \)
 - biggest of \(KL/r \) with respect to \(x \) axes and \(y \) axis
3. find \(F_a \) or \(F_{cr} \) from appropriate equations
 - or find a chart
4. compute \(P_{\text{allowable}} = F_a A \) (or \(P_n = F_{cr} A_g \))
 - or find \(f_{\text{actual}} = P/A \)
5. is \(P \leq P_{\text{allowable}} \) (or \(P_u \leq \phi P_n \)?)
 - yes: ok
 - no: pick a bigger section and go back to step 2.
6. check design efficiency
 - percentage of stress = \(\frac{P_r}{P_c} \cdot 100\% \)
 - if between 90-100%: good
 - if < 90%: pick a smaller section and go back to step 2.
Column Charts, F_a (pg. 361-364)

Table 10.1 Allowable stress for compression members ($F_y = 36$ ksi and $F_v = 250$ ksi).

<table>
<thead>
<tr>
<th>KL</th>
<th>r</th>
<th>F_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>312</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>312</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>312</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>312</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>312</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>312</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>312</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>312</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>312</td>
</tr>
</tbody>
</table>

Column Charts, ϕF_{cr}

Available Critical Stress, ϕF_{cr}, for Compression Members, ksi ($F_y = 60$ ksi and $\phi = 0.90$).

<table>
<thead>
<tr>
<th>KL/r</th>
<th>ϕF_{cr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.0</td>
</tr>
<tr>
<td>2</td>
<td>45.0</td>
</tr>
<tr>
<td>3</td>
<td>45.0</td>
</tr>
<tr>
<td>4</td>
<td>44.9</td>
</tr>
<tr>
<td>5</td>
<td>44.9</td>
</tr>
<tr>
<td>6</td>
<td>44.8</td>
</tr>
<tr>
<td>7</td>
<td>44.8</td>
</tr>
<tr>
<td>8</td>
<td>44.8</td>
</tr>
<tr>
<td>9</td>
<td>44.7</td>
</tr>
<tr>
<td>10</td>
<td>44.7</td>
</tr>
</tbody>
</table>

Beam-Column Design

- moment magnification ($P-\Delta$)

$$M_u = B_1 M_{max} - \text{factored} \quad B_1 = \frac{C_m}{1 - (P_u / P_{el})}$$

C_m – modification factor for end conditions

$P_{el} = \frac{\pi^2 EA}{(KL/r)^2}$

Steel Columns & Tension 11
Foundations Structures
ARCH 331
Lecture 20
F2008abn

Steel Columns & Tension 14
Foundations Structures
ARCH 331
Lecture 20
S2012abn
Beam-Column Design

• LRFD (Unified) Steel
 – for \(\frac{P_r}{P_c} \geq 0.2 : \quad \frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \leq 1.0 \)
 – for \(\frac{P_r}{P_c} < 0.2 : \quad \frac{P_u}{2\phi_c P_n} + \frac{9}{8} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \leq 1.0 \)

\(P_r \) is required, \(P_c \) is capacity

\(\phi_c \) - resistance factor for compression = 0.9

\(\phi_b \) - resistance factor for bending = 0.9

Design Steps Knowing Loads (revisited)

1. assume limiting stress
 • buckling, axial stress, combined stress
2. solve for \(r, A \) or \(S \)
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok

Rigid Frame Design (revisited)

• columns in frames
 – ends can be “flexible”
 – stiffness affected by beams and column = \(EI/L \)
 \[G = \Psi = \frac{\Sigma EI}{l_c} \]
 – for the joint
 • \(l_c \) is the column length of each column
 • \(l_b \) is the beam length of each beam
 • measured center to center
Steel Columns & Tension

Lecture 20

Foundations Structures

ARCH 331

Tension Members

- steel members can have holes
- reduced area
 \[A_n = A_g - A_{of \ all \ holes} + t \sum \frac{s^2}{4g} \]
- increased stress

Effective Net Area

- likely path to “rip” across
- bolts divide transferred force too
- shear lag
 \[A_e \leq A_n U \]

Tension Members

- limit states for failure

1. yielding \(\phi_t = 0.90 \) \(P_n = F_y A_g \)
2. rupture* \(\phi_t = 0.75 \) \(P_n = F_u A_e \)

- \(A_g \) - gross area
- \(A_e \) - effective net area
- (holes 3/16” + d)
- \(F_u \) = the tensile strength of the steel (ultimate)