Connections

• needed to:
 – support beams by columns
 – connect truss members
 – splice beams or columns
• transfer load
• subjected to
 – tension or compression
 – shear
 – bending

Bolts

• bolted steel connections

Welds

• welded steel connections
Bolts

- **types**
 - materials
 - high strength
 - A307, A325, A490
 - location of threads
 - included - N
 - excluded - X
 - friction or bearing (SC)
 - always tightened

Bolted Connection Design

- **considerations**
 - bearing stress
 - yielding
 - shear stress
 - single & double
 - member
 - rupture

Equation:

\[R_a \leq \frac{R_n}{\phi_v} \]
\[R_u \leq \phi_v R_n \]

- single shear or tension
 \[\phi_v = 0.75 \]

- double shear
 \[R_n = F_n A_h \]
 \[R_n = F_n 2A_h \]

Table 7-1

<table>
<thead>
<tr>
<th>Nominal Bolt Diameter, d, in</th>
<th>Available Shear Strength of Bolts, kips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
</tr>
</tbody>
</table>

Table 7-2

<table>
<thead>
<tr>
<th>Nominal Bolt Diameter, d, in</th>
<th>Available Tensile Strength of Bolts, kips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
</tr>
</tbody>
</table>

http://www.fastenal.com
Bolts

- bearing \(R_u \leq \frac{R_n}{\phi} \) \(\phi = 0.75 \)
 - deformation is concern \(R_n = 1.2L_c t F_u \leq 2.4dt F_u \)
 - deformation isn’t concern \(R_n = 1.5L_c t F_u \leq 3.0dt F_u \)
 - long slotted holes \(R_n = 1.0L_c t F_u \leq 2.0dt F_u \)

 \(L_c \) – clear length to edge or next hole (ex. 1¼", 3")

Welded Connection Design

- considerations
 - shear stress
 - yielding
 - rupture

Steel Bolts & Welding
Lecture 18
Foundations Structures
ARCH 331
Su2011abn

Welded Connection Design

- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat
- field welding
- shop welding

Steel Bolts & Welding
Lecture 21
Foundations Structures
ARCH 331
F2008abn
Welded Connection Design

- **weld process**
 - melting of material
 - melted filler - electrode
 - shielding gas / flux
 - potential defects

- **weld materials**
 - $E60XX$
 - $E70XX$
 - $F_{EXX} = 70$ ksi

Welded Connection Design

- **minimum**
 - table

- **maximum**
 - material thickness (to $\frac{1}{4}$")
 - $1/16"$ less

- **min. length**
 - $4 \times$ size min.
 - $\geq 1 \frac{1}{2}$

Table 2.4: Minimum Size of Fillet Welds

<table>
<thead>
<tr>
<th>Material Thickness of Thicker Part Jointed, in (mm)</th>
<th>Minimum Size of Weld Electrode Size, in (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>$\frac{3}{8}$</td>
</tr>
</tbody>
</table>

Note: Single pass welds must be used.

Welded Connection Design

- **shear**

\[R_a \leq \frac{R_n}{\Omega} \]

\[R_u \leq \phi R_n \]

\[R_n = 0.6 F_{EXX} T l = S l \]

- **shear failure assumed**
- **throat**
 - $T = 0.707 \times$ weld size
- **area**
 - $A = T \times$ length of weld
- **weld metal generally stronger than base metal** (ex. $F_y = 50$ ksi)

Available Strengths of Fillet Welds per inch of weld (g)

<table>
<thead>
<tr>
<th>Weld Size (in)</th>
<th>F_{EXX} (ksi)</th>
<th>E_{LOOK} (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{6}$</td>
<td>3.50</td>
<td>4.10</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>4.77</td>
<td>5.57</td>
</tr>
<tr>
<td>$\frac{3}{8}$</td>
<td>5.97</td>
<td>6.96</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>7.16</td>
<td>8.35</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>8.35</td>
<td>9.74</td>
</tr>
<tr>
<td>$\frac{3}{8}$</td>
<td>9.55</td>
<td>11.14</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>13.32</td>
<td>13.92</td>
</tr>
<tr>
<td>$\frac{3}{4}$</td>
<td>14.52</td>
<td>16.70</td>
</tr>
</tbody>
</table>

Not considering increase in stress with submerged arc weld process
Framed Beam Connections

• angles
 – bolted
 – welded

Steel Bolts & Welding 17
Lecture 21
Foundations Structures
ARCH 331
F2008abn

Framed Beam Connections

• terms
 – coping

Steel Bolts & Welding 18
Lecture 21
Foundations Structures
ARCH 331
F2008abn

Framed Beam Connections

• tables for standard bolt sizes & spacings
• # bolts
• bolt diameter, angle leg thickness
• bearing on beam web

Steel Bolts & Welding 19
Lecture 18
Foundations Structures
ARCH 331
Su2011abn

Framed Beam Connections

• welded example (shear)

Steel Bolts & Welding 20
Lecture 21
Foundations Structures
ARCH 331
F2008abn
Framed Beam Connections

• welded moment example

(AISC - Steel Structures of the Everyday)

Framed Beam Connections

• welded/bolted moment example

(AISC - Steel Structures of the Everyday)

Framed Beam Connections

• welded/bolted moment example

(AISC - Steel Structures of the Everyday)

Beam Connections

• LRFD provisions
 – shear yielding
 – shear rupture
 – block shear rupture
 – tension yielding
 – tension rupture
 – local web buckling
 – lateral torsional buckling
 Beam Connections

\[R_n = 0.6F_u A_{nv} + U_{bs} F_u A_{nt} \leq 0.6F_y A_{gv} + U_{bs} F_u A_{nt} \]

- where \(U_{bs} \) is 1 for uniform tensile stress

Other Connections

- seated beam
- continuous
 - beam to column
 - beam to beam

Other Connections

- splices

- rigid frame knees
- gussets & joints

\[\phi = 0.75 \]
Other Connections

- base plates
 - anchor bolts
 - bearing on steel
 - bending of plate