Concrete Beam Design

- composite of concrete and steel
- American Concrete Institute (ACI)
 - design for maximum stresses
 - limit state design
 - service loads x load factors
 - concrete holds no tension
 - failure criteria is yield of reinforcement
 - failure capacity x reduction factor
 - factored loads < reduced capacity
 - concrete strength = f'_c

Concrete Construction

- cast-in-place
- tilt-up
- prestressing
- post-tensioning

Concrete Beams

- types
 - reinforced
 - precast
 - prestressed
- shapes
 - rectangular, I
 - T, double T's, bulb T's
 - box
 - spandrel
Concrete Beams

- shear
 - vertical
 - horizontal
 - combination:
 - tensile stresses at 45°
- bearing
 - crushing

Concrete

- hydration
 - chemical reaction
 - workability
 - water to cement ratio
 - mix design
- fire resistant
- cover for steel
- creep & shrinkage

Concrete

- low strength to weight ratio
- relatively inexpensive
 - Portland cement
 - types I - V
 - aggregate
 - course & fine
 - water
 - admixtures
 - air entraining
 - superplasticizers

Concrete

- placement (not pouring!)
- vibrating
- screeding
- floating
- troweling
- curing
- finishing
Reinforcement

• deformed steel bars (rebar)
 – Grade 40, $F_y = 40$ ksi
 – Grade 60, $F_y = 60$ ksi - most common
 – Grade 75, $F_y = 75$ ksi
 – US customary in # of 1/8” ϕ (nominal)
• longitudinally placed
 – bottom
 – top for compression reinforcement

Composite Beams

• concrete
 – in compression
• steel
 – in tension
• shear studs

Behavior of Composite Members

• plane sections remain plane
• stress distribution changes

$$f_1 = E_1 \varepsilon = - \frac{E_1 y}{\rho}$$
$$f_2 = E_2 \varepsilon = - \frac{E_2 y}{\rho}$$
Transformation of Material

- n is the ratio of E's \[n = \frac{E_2}{E_1} \]
- effectively widens a material to get same stress distribution

Stresses in Composite Section

- with a section transformed to one material, new I
 \[n = \frac{E_2}{E_1} = \frac{E_{\text{steel}}}{E_{\text{concrete}}} \]
 \[f_c = -\frac{M_y}{I_{\text{transformed}}} \]
 \[f_s = -\frac{M_y}{I_{\text{transformed}}} \]

Reinforced Concrete - stress/strain

- for stress calculations
 - steel is transformed to concrete
 - concrete is in compression above n.a. and represented by an equivalent stress block
 - concrete takes no tension
 - steel takes tension
 - force ductile failure
Location of n.a.

• ignore concrete below n.a.
• transform steel
• same area moments, solve for x

$$bx \cdot \frac{x}{2} - nA_s (d - x) = 0$$

T sections

• n.a. equation is different if n.a. below flange

$$b_f h_f \left(x - \frac{h_f}{2} \right) + (x - h_f) b_w \left(\frac{x - h_f}{2} \right) - nA_s (d - x) = 0$$

ACI Load Combinations*

• 1.4D
• 1.2D + 1.6L + 0.5(L_r or S or R)
• 1.2D + 1.6(L_r or S or R) + (1.0L or 0.5W)
• 1.2D + 1.0W + 1.0L + 0.5(L_r or S or R)
• 1.2D + 1.0E + 1.0L + 0.2S
• 0.9D + 1.0W
• 0.9D + 1.0E

*can also use old ACI factors

Reinforced Concrete Design

• stress distribution in bending

Wang & Salmon, Chapter 3
Force Equations

- $C = 0.85 \ f'_c b a$
- $T = A_s f_y$
- where
 - f'_c = concrete compressive strength
 - a = height of stress block
 - β_1 = factor based on f'_c
 - x = location to the n.a.
 - b = width of stress block
 - f_y = steel yield strength
 - A_s = area of steel reinforcement

Equilibrium

- $T = C$
- $M_n = T(d-a/2)$
 - d = depth to the steel n.a.
- with A_s
 - $a = \frac{A_s f_y}{0.85 f'_c b}$
 - $M_u \leq \phi M_n$, $\phi = 0.9$ for flexure*
 - $\phi M_n = \phi T(d-a/2) = \phi A_s f_y (d-a/2)$

Over and Under-reinforcement

- over-reinforced
 - steel won’t yield
- under-reinforced
 - steel will yield
- reinforcement ratio
 - $\rho = \frac{A_s}{bd}$
 - use as a design estimate to find A_s, b, d
 - max ρ is found with $\varepsilon_{steel} \geq 0.004$ (not ρ_{bal})
 - *with $\varepsilon_{steel} \geq 0.005$, $\phi = 0.9$

A_s for a Given Section

- several methods
 - guess a and iterate
 1. guess a (less than n.a.)
 2. $A_s = \frac{0.85 f'_c b a}{f_y}$
 3. solve for a from $M_u = \phi A_s f_y (d-a/2)$
 4. repeat from 2. until a from 3. matches a in 2.
\(A_s \) for a Given Section (cont)

- chart method
 - Wang & Salmon Fig. 3.8.1 \(R_n \) vs. \(\rho \)
 1. calculate \(R_n = \frac{M_n}{bd^2} \)
 2. find curve for \(f'_c \) and \(f_y \) to get \(\rho \)
 3. calculate \(A_s \) and \(a \)
- simplify by setting \(h = 1.1d \)

Reinforcement

- min for crack control
- required
 \[
 A_s = \frac{3\sqrt{f'_c}}{f_y} (bd)
 \]
- not less than
 \[
 A_i = \frac{200}{f_y} (bd)
 \]
- \(A_{s_{-max}} : a = \beta_1 (0.375d) \)
- typical cover
 - 1.5 in, 3 in with soil
- bar spacing

Shells

- Annunciation Greek Orthodox Church
 - Wright, 1956

http://nisee.berkeley.edu/godden

http://www.bluffton.edu/~sullivanm/
Annunciation Greek Orthodox Church
• Wright, 1956

Cylindrical Shells
• can resist tension
• shape adds “depth”
• not vaults
• barrel shells

Kimball Museum, Kahn 1972
• outer shell edges
Kimball Museum, Kahn 1972

- skylights at peak

Approximate Depths

[Diagram of concrete beams with labeled depths and specifications]