Wood Design

Notation:

\[a = \text{name for width dimension} \]
\[A = \text{name for area} \]
\[A_{\text{req'd-adj}} = \text{area required at allowable stress when shear is adjusted to include self weight} \]
\[b = \text{width of a rectangle} \]
\[c_1 = \text{name for height dimension} \]
\[c_2 = \text{coefficient for shear stress for a rectangular bar in torsion} \]
\[C_C = \text{curvature factor for laminated arches} \]
\[C_D = \text{load duration factor} \]
\[C_{f_{\text{u}}} = \text{flat use factor for other than decks} \]
\[C_F = \text{size factor} \]
\[C_H = \text{shear stress factor} \]
\[C_I = \text{incising factor} \]
\[C_L = \text{beam stability factor} \]
\[C_M = \text{wet service factor} \]
\[C_p = \text{column stability factor for wood design} \]
\[C_r = \text{repetitive member factor for wood design} \]
\[C_V = \text{volume factor for glue laminated timber design} \]
\[C_t = \text{temperature factor for wood design} \]
\[d = \text{name for depth} \]
\[d_{\text{min}} = \text{dimension of timber critical for buckling} \]
\[DL = \text{shorthand for dead load} \]
\[E = \text{modulus of elasticity} \]
\[f = \text{stress (strength is a stress limit)} \]
\[f_b = \text{bending stress} \]
\[f_{\text{from table}} = \text{tabular strength (from table)} \]
\[f_p = \text{bearing stress} \]
\[f_r = \text{radial stress for a glulam timber} \]
\[f_v = \text{shear stress} \]
\[f_{\text{v-max}} = \text{maximum shear stress} \]
\[F_b = \text{tabular bending strength} \]
\[F_{b'} = \text{allowable bending stress} \]
\[F_{b'} = \text{allowable bending stress (adjusted)} \]
\[F_{c,E} = \text{theoretical allowed buckling stress} \]
\[F_{c,L} = \text{tabular compression strength perpendicular to the grain} \]
\[F_{p} = \text{tabular bearing strength parallel to the grain} \]
\[F_{p'} = \text{allowable bearing stress} \]
\[F_R = \text{allowable radial stress} \]
\[F_t = \text{tabular tensile strength} \]
\[F_u = \text{ultimate strength} \]
\[F_v = \text{tabular bending strength} \]
\[F_{\text{v-max}} = \text{maximum shear stress} \]
\[F_{\text{v}} = \text{allowable shear stress} \]
\[h = \text{height of a rectangle} \]
\[I = \text{moment of inertia with respect to neutral axis bending} \]
\[I_{\text{trial}} = \text{moment of inertia of trial section} \]
\[I_{\text{req'd}} = \text{moment of inertia required at limiting deflection} \]
\[I_y = \text{moment of inertia with respect to an y-axis} \]
\[J = \text{polar moment of inertia} \]
\[K_{c,E} = \text{material factor for wood column design} \]
\[L_e = \text{effective length that can buckle for column design, as is } l_e \]
\[L = \text{name for length or span length} \]
\[LL = \text{shorthand for live load} \]
\[LRFD = \text{load and resistance factor design} \]
\[M = \text{internal bending moment} \]
\[M_{\text{max}} = \text{maximum internal bending moment} \]
\[M_{\text{max-adj}} = \text{maximum bending moment adjusted to include self weight} \]
\[P = \text{name for axial force vector} \]
\[R = \text{radius of curvature of a deformed beam} \]
\[R = \text{radius of curvature of a laminated arch} \]
\[S = \text{name for a reaction force} \]
\[S_{\text{req'd}} = \text{section modulus} \]
\[S_{\text{req'd}} = \text{section modulus required at allowable stress} \]
Wood or Timber Design

Structural design standards for wood are established by the National Design Specification (NDS) published by the National Forest Products Association. There is a combined specification (from 2005) for Allowable Stress Design and limit state design (LRFD).

Tabulated wood strength values are used as the base allowable strength (ASD) and modified by appropriate adjustment factors:

\[f = C_D C_M C_F \times f_{\text{from table}} \]

Adjustment Factors

- **C_D** load duration factor
- **C_M** wet service factor
 (1.0 dry < 16% moisture content)
- **C_t** temperature factor (at high temperatures strength decreases)
- **C_L** beam stability factor (for beams without full lateral support)
- **C_F** size factor for visually graded sawn lumber and round timber > 12” depth
 \[C_F = (12 / d)^{0.9} \leq 1.0 \]
- **C_V** volume factor for glued laminated timber
 (similar to **C_F**)
- **C_{fu}** flat use factor (excluding decking)
- **C_r** repetitive member factor (1.15 for three or more parallel members of Dimension lumber spaced not more than 24 in. on center, connected together by a load-distributing element such as roof, floor, or wall sheathing)
- **C_c** curvature factor for glued laminated timber (1.0 straight & cambered)
 \[t/R \leq 1/100 \text{ for hardwoods & southern pine or } 1/125 \text{ other softwoods} \]
 \[C_c = 1 - 2000(t/R)^2 \]
- **C_i** incising factor (0.85 incised sawn lumber, 1 for sawn lumber not incised and glulam)
- **C_H** shear stress factor (amount of splitting)
- **C_P** column stability factor (1.0 for fully supported columns)
Design Values

- \(F_b \): bending stress
- \(F_t \): tensile stress
- \(F_v \): horizontal shear stress
- \(F_{c\perp} \): compression stress (perpendicular to grain)
- \(F_{c\parallel} \): compression stress (parallel to grain)
- \(E \): modulus of elasticity
- \(F_p \): bearing stress (parallel to grain)

Wood is significantly weakest in shear and strongest along the direction of the grain (tension and compression).

Load Combinations and Deflection

The critical load combination is determined by the largest of either:

\[
\frac{\text{dead load}}{0.9} \quad \text{or} \quad \frac{\text{dead load} + \text{any combination of live load}}{C_D}
\]

The deflection limits may be increased for less stiffness with total load: \(LL + 0.5(DL) \)

Criteria for Beam Design

Allowable normal stress or normal stress from LRFD should not be exceeded:

Knowing \(M \) and \(F_b \), the minimum section modulus fitting the limit is:

\[S_{req'd} \geq \frac{M}{F_b} \]

Besides strength, we also need to be concerned about serviceability. This involves things like limiting deflections & cracking, controlling noise and vibrations, preventing excessive settlements of foundations and durability. When we know about a beam section and its material, we can determine beam deformations.

Determining Maximum Bending Moment

Drawing V and M diagrams will show us the maximum values for design. Computer applications are very helpful.

Determining Maximum Bending Stress

For a prismatic member (constant cross section), the maximum normal stress will occur at the maximum moment.

For a non-prismatic member, the stress varies with the cross section AND the moment.
Deflections

Elastic curve equations can be found in handbooks, textbooks, design manuals, etc...Computer programs can be used as well.

Elastic curve equations can be superpositioned ONLY if the stresses are in the elastic range. The deflected shape is roughly the same shape flipped as the bending moment diagram but is constrained by supports and geometry.

Allowable Deflection Limits

All building codes and design codes limit deflection for beam types and damage that could happen based on service condition and severity.

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>

Lateral Buckling

With compression stresses in the top of a beam, a sudden “popping” or buckling can happen even at low stresses. In order to prevent it, we need to brace it along the top, or laterally brace it, or provide a bigger I_y.

Beam Loads & Load Tracing

In order to determine the loads on a beam (or girder, joist, column, frame, foundation...) we can start at the top of a structure and determine the *tributary area* that a load acts over and the beam needs to support. Loads come from material weights, people, and the environment. This area is assumed to be from half the distance to the next beam over to halfway to the next beam.

The reactions must be supported by the next lower structural element *ad infinitum*, to the ground.

Design Procedure

The intent is to find the most light weight member satisfying the section modulus size.

1. Know F_all for the material or F_U for LRFD.
2. Draw V & M, finding M_max.
3. Calculate $S_{\text{req'd}}$. This step is equivalent to determining $f_b = \frac{M_{\text{max}}}{S} \leq F'_b$

4. For rectangular beams $S = \frac{bh^2}{6}$

- For timber: use the section charts to find S that will work and remember that the beam self weight will increase $S_{\text{req'd}}$.

****Determine the “updated” V_{max} and M_{max} including the beam self weight, and verify that the updated $S_{\text{req'd}}$ has been met.******

5. Consider lateral stability.

6. Evaluate horizontal shear stresses using V_{max} to determine if $f_v \leq F'_v$

For rectangular beams $f_{v-\text{max}} = \frac{3V}{2A} = 1.5 \frac{V}{A}$

7. Provide adequate bearing area at supports: $f_p = \frac{P}{A} \leq F'_p$

8. Evaluate shear due to torsion $f_v = \frac{T\rho}{J} \text{ or } \frac{T}{c_1ab^2} \leq F'_v$

(circular section or rectangular)

9. Evaluate the deflection to determine if $\Delta_{\text{max},\text{LL}} \leq \Delta_{\text{LL-allowed}}$ and/or $\Delta_{\text{max},\text{Total}} \leq \Delta_{\text{Total-allowed}}$

**** note: when $\Delta_{\text{calculated}} > \Delta_{\text{limit}}$, I_{required} can be found with: $I_{\text{req'd}} \geq \frac{\Delta_{\text{too big}}}{\Delta_{\text{limit}}} I_{\text{trial}}$ and $S_{\text{req'd}}$ will be satisfied for similar self weight ******

FOR ANY EVALUATION:

Redesign (with a new section) at any point that a stress or serviceability criteria is NOT satisfied and re-evaluate each condition until it is satisfactory.

Load Tables for Uniformly Loaded Joists & Rafters

Tables exist for the common loading situation for joists and rafters – that of uniformly distributed load. The tables either provide the safe distributed load based on bending and deflection limits, they give the allowable span for specific live and dead loads. If the load is not uniform, an equivalent distributed load can be calculated from the maximum moment equation.

Decking

Flat panels or planks that span several joists or evenly spaced support behave as continuous beams. Design tables consider a “1 unit” wide strip across the supports and determine maximum bending moment and deflections in order to provide allowable loads depending on the depth of the material.
The other structural use of decking is to construct what is called a *diaphragm*, which is a horizontal or vertical (if the panels are used in a shear wall) unit tying the sheathing to the joists or studs that resists forces parallel to the surface of the diaphragm.

Column Design

If we know the loads, we can select a section that is adequate for strength & buckling.

If we know the length, we can find the limiting load satisfying strength & buckling.

Any slenderness ratio, \(L_e/d \leq 50\):

\[
f_c' = \frac{P}{A} \leq F_c' \quad \quad F_c' = F_c \left(C_D \right) \left(C_M \right) \left(C_t \right) \left(C_F \right) \left(C_p \right)
\]

The allowable stress equation uses factors to replicate the combination crushing-buckling curve:

where:

\(F_c'\) = allowable compressive stress parallel to the grain
\(F_c\) = compressive strength parallel to the grain
\(C_D\) = load duration factor
\(C_M\) = wet service factor (1.0 for dry)
\(C_t\) = temperature factor
\(C_F\) = size factor
\(C_p\) = column stability factor off chart

or equation:

\[
C_p = \frac{1 + (F_{cE} / F_c^*)}{2c} - \sqrt{\left[\frac{1 + F_{cE}/F_c^*}{2c}\right]^2 - \frac{F_{cE}/F_c^*}{c}}
\]

For preliminary column design:

\[
F_c' = F_c C_p = (F_c C_D) C_p
\]

Procedure for Analysis

1. Calculate \(L_e/d_{\text{min}}\) (KL/d for each axis and chose largest)
2. Obtain \(F_c'\)

 \[
 \text{compute } F_{cE} = \frac{K_{cE}E}{(v/d)^2} \quad \text{with } K_{cE}=0.3 \text{ for sawn, } =0.418 \text{ for glu-lam}
 \]
3. Compute \(F_c^* \simeq F_c C_D\) with \(C_D = 1\), normal, \(C_D =1.25\) for 7 day roof, etc....
4. Calculate \(F_{cE}/F_c^*\) and get \(C_p\) from table or calculation
5. Calculate \(F_c' = F_c C_p\)
6. Compute \(P_{\text{allowable}} = F_c' A\) or *alternatively* compute \(f_{\text{actual}} = P/A\)
7. Is the design satisfactory?

 \[\text{Is } P \leq P_{\text{allowable}}? \Rightarrow \text{yes, it is; no, it is no good}\]
or Is $f_{\text{actual}} \leq F'_c$? \Rightarrow yes, it is; no, it is no good

Procedure for Design

1. Guess a size by picking a section
2. Calculate L_e/d_{min} (KL/d for each axis and choose largest)
3. Obtain F'_c

 \[F'_c = \frac{K_c E}{(l/d)^2} \]
 with $K_c = 0.3$ for sawn, $= 0.418$ for glu-lam
4. Compute $F'_c^* \approx F'_c C_D$ with $C_D = 1$, normal, $C_D = 1.25$ for 7 day roof...
5. Calculate F'_c / F'_c^* and get C_p from table or calculation
6. Calculate $F'_c = F'_c C_p$
7. Compute $P_{\text{allowable}} = F'_c A$ or alternatively compute $f_{\text{actual}} = P/A$
8. Is the design satisfactory?

 Is $P \leq P_{\text{allowable}}$? \Rightarrow yes, it is; no, pick a bigger section and go back to step 2.

 or Is $f_{\text{actual}} \leq F'_c$? \Rightarrow yes, it is; no, pick a bigger section and go back to step 2.

Trusses

Timber trusses are commonly manufactured with continuous top or bottom chords, but the members are still design as compression and tension members (without the effect of bending.)

Stud Walls

Stud wall construction is often used in light frame construction together with joist and rafters. Studs are typically 2-in. nominal thickness and must be braced in the weak axis. Most wall coverings provide this function. Stud spacing is determined by the width of the panel material, and is usually 16 in. The lumber grade can be relatively low. The walls must be designed for a combination of wind load and bending, which means beam-column analysis.

Columns with Bending (Beam-Columns)

The modification factors are included in the form:

\[
\left(\frac{f_c}{F_c'} \right)^2 + \frac{f_{bx}}{F'_{bx}} \left[1 - \frac{f_c}{F_{cEx}} \right] \leq 1.0
\]

where:

\[
1 - \frac{f_c}{F_{cEx}} = \text{magnification factor accounting for P-\Delta}
\]

$F'_{bx} = \text{allowable bending stress}$

$f_{bx} = \text{working stress from bending about x-x axis}$
In order to design an adequate section for allowable stress, we have to start somewhere:

1. Make assumptions about the limiting stress from:
 - buckling
 - axial stress
 - combined stress

2. See if we can find values for r or A or $S (=l/c_{max})$

3. Pick a trial section based on if we think r or A is going to govern the section size.

4. Analyze the stresses and compare to allowable using the allowable stress method or interaction formula for eccentric columns.

5. Did the section pass the stress test?
 - If not, do you increase r or A or S?
 - If so, is the difference really big so that you could decrease r or A or S to make it more efficient (economical)?

6. Change the section choice and go back to step 4. Repeat until the section meets the stress criteria.

Glue Laminated Timber

These members come in nominal widths of 3, 4, 6, 8, 10, 12, 14 and 16 inches. The depth can exceed 12 inches, so the size factor, C_F must be used. The formula is based on a uniformly loaded beam, simply supported with an l/d ratio of 21. With a single midspan load, multiply C_F by 1.078. With two loads at third points, multiply C_F by 0.968. (Note: The Section Properties/Standard Sizes table provides section modulus that include C_F).

$$C_F = (12 / d)^{1/6} \leq 1.0$$

If a glulam is subject to lateral buckling, the slenderness factor is used, and the size factor is not.

Laminated Arches

The radius of curvature, R, is limited because of residual bending stresses between lams of thickness t to 100t for Southern pine and hardwoods and 250t for softwoods.

The allowable bending stress for combined stresses is $F_b' = F_b(C_F C_C)$

Bending of a curved glulam causes radial stresses (like membrane pressures) in tension and compression which can be evaluated for an arc with a radius of R at the neutral axis from:

$$f_r = \frac{3M}{2Rbd}$$

for constant rectangular cross section

$$f_r \leq F_R$$

where $F_R = \begin{cases} F_{c_{\perp}} \\ \sqrt{3} F_v \end{cases}$
Table 9.3 Column Stability Factor C_p

<table>
<thead>
<tr>
<th>C_{F_p}</th>
<th>C_{F_p}</th>
<th>C_{F_p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{C_p}</td>
<td>F_{C_p}</td>
<td>F_{C_p}</td>
</tr>
<tr>
<td>F_{C_p}</td>
<td>F_{C_p}</td>
<td>F_{C_p}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F_{C_p}</th>
<th>F_{C_p}</th>
<th>F_{C_p}</th>
<th>F_{C_p}</th>
<th>F_{C_p}</th>
<th>F_{C_p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
</tr>
<tr>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F_{C_p}</th>
<th>F_{C_p}</th>
<th>F_{C_p}</th>
<th>F_{C_p}</th>
<th>F_{C_p}</th>
<th>F_{C_p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{C_p}</td>
<td>F_{C_p}</td>
<td>F_{C_p}</td>
<td>F_{C_p}</td>
<td>F_{C_p}</td>
<td>F_{C_p}</td>
</tr>
<tr>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
</tr>
<tr>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
<td>C_{F_p}</td>
</tr>
</tbody>
</table>

Statics and Strength of Materials for Architecture and Building Construction, 2nd ed., Onouye & Kane

Table developed and permission for use granted by Professor Ed Lebert, Dept. of Architecture, University of Washington.
SECTION PROPERTIES / STANDARD SIZES

To the extent that other considerations will permit, the finished sizes of structural glued laminated timber as given in Table 8 constitute normal industry practice. Industry standards do, however, permit the use of any depth or width of glued laminated timber. Dimension lumber of 1 1/8 in. net thickness is normally used for laminating straight members.

The modified section modulus includes size factor (C_s), and no further reduction of bending stress for size is needed.

<table>
<thead>
<tr>
<th>DEPTH, in.</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>DEPTH, in.</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 3/4" WIDTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 3/4" WIDTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5" WIDTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>

| 5 3/4" WIDTH |

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>

| 6" WIDTH |

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>

| 10 3/4" WIDTH |

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>

| 8 3/4" WIDTH |

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>

| 8" WIDTH |

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>

| 8 3/4" WIDTH |

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>

| 9 3/4" WIDTH |

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>

| 10" WIDTH |

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>

| 10 3/4" WIDTH |

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>

| 11" WIDTH |

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>

| 11 3/4" WIDTH |

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>

| 12" WIDTH |

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>

| 12 3/4" WIDTH |

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>

| 13" WIDTH |

<table>
<thead>
<tr>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
<th>depth</th>
<th>AREA, in.2</th>
<th>MODIFIED SECTION MODULUS, SC, in.3</th>
<th>MOMENT OF INERTIA, in.4</th>
</tr>
</thead>
</table>
ASD Beam Design Flow Chart

1. Collect data: L, ω, γ, Δlimits; find beam charts for load cases and Δactual equations
2. Collect data: F'b & F'v
3. Find Vmax & Mmax from constructing diagrams or using beam chart formulas
4. Find Sreq'd and pick a section from a table with Sx greater or equal to Sreq'd
5. Calculate ωself wt. using A found and γ. Find Mmax-adj & Vmax-adj.
6. Calculate Sreq'd-adj using Mmax-adj
 - Is Sreq'd(picked) ≥ Sreq'd-adj? (OR calculate fb. Is fb ≤ F'b?)
 - Yes
 - No
7. Calculate Areq'd-adj using Vmax-adj
 - Is Areq'd(picked) ≥ Areq'd-adj? (OR calculate fv. Is fv ≤ F'v?)
 - No
 - Yes, pick a new section with a larger area
8. Calculate Δmax (no load factors!) using superpositioning and beam chart equations with the Ix for the section
9. Is Δmax ≤ Δlimits? (This may be both the limit for live load deflection and total load deflection.)
 - No
 - Yes, (DONE)