Steel Design

Notation:

\(a \) = name for width dimension
\(A \) = name for area
\(A_g \) = gross area, equal to the total area ignoring any holes
\(A_{\text{req’d-adj}} \) = area required at allowable stress when shear is adjusted to include self weight
\(A_w \) = area of the web of a wide flange section, as is \(A_{\text{web}} \)

\(AISC \) = American Institute of Steel Construction

\(ASD \) = allowable stress design
\(b \) = name for a (base) width
\(b_f \) = width of the flange of a steel beam cross section
\(B \) = width of a column base plate
\(B_1 \) = factor for determining \(M_u \) for combined bending and compression
\(c \) = largest distance from the neutral axis to the top or bottom edge of a beam, as is \(c_{\text{max}} \)
\(c_1 \) = coefficient for shear stress for a rectangular bar in torsion

\(C_b \) = lateral torsional buckling modification factor for moment in ASD & LRFD steel beam design
\(C_m \) = modification factor accounting for combined stress in steel design
\(C_v \) = web shear coefficient
\(d \) = name for depth
\(D \) = shorthand for dead load
\(DL \) = shorthand for dead load
\(E \) = shorthand for earthquake load
\(= \) modulus of elasticity
\(f_a \) = axial stress
\(f_b \) = bending stress
\(f_p \) = bearing stress
\(f_v \) = shear stress
\(f_{v-\text{max}} \) = maximum shear stress
\(f_y \) = yield stress
\(F \) = shorthand for fluid load
\(F_a \) = allowable axial (compressive) stress
\(F_b \) = allowable bending stress
\(F_{cr} \) = flexural buckling stress
\(F_e \) = elastic critical buckling stress
\(F_p \) = allowable bearing stress
\(F_u \) = ultimate stress prior to failure
\(F_y \) = yield strength
\(F_{yw} \) = yield strength of web material
\(h \) = name for a height
\(h_c \) = height of the web of a wide flange steel section
\(H \) = shorthand for lateral pressure load
\(I \) = moment of inertia with respect to neutral axis bending
\(I_y \) = moment of inertia about the y axis
\(J \) = polar moment of inertia
\(k \) = distance from outer face of W flange to the web toe of fillet
\(= \) shape factor for plastic design of steel beams
\(K \) = effective length factor for columns, as is \(k \)
\(l \) = name for length, as is \(L \)
\(= \) column base plate design variable
\(L \) = name for length or span length, as is \(l \)
\(= \) shorthand for live load
\(L_b \) = unbraced length of a steel beam in LRFD design
\(L_c \) = effective length that can buckle for column design, as is \(\ell_e \)
\(L_r \) = shorthand for live roof load
\(= \) maximum unbraced length of a steel beam in LRFD design for inelastic lateral-torsional buckling
\(L_p \) = maximum unbraced length of a steel beam in LRFD design for full plastic flexural strength
\(LL \) = shorthand for live load
\(LRFD \) = load and resistance factor design
\(m \) = edge distance for a column base plate
\(M \) = internal bending moment
\(M_a \) = required bending moment (ASD)
\(M_{\text{max}} \) = maximum internal bending moment
\(M_{\text{max-adj}} \) = maximum bending moment adjusted to include self weight
M_n = nominal flexure strength with the full section at the yield stress for LRFD beam design

M_p = internal bending moment when all fibers in a cross section reach the yield stress

M_u = maximum moment from factored loads for LRFD beam design

M_y = internal bending moment when the extreme fibers in a cross section reach the yield stress

n = edge distance for a column base plate

n' = column base plate design value

$n.a.$ = shorthand for neutral axis

N = bearing length on a wide flange steel section

$= depth of a column base plate

P = name for load or axial force vector

P_a = required axial force (ASD)

P_c = available axial strength

P_{el} = Euler buckling strength

P_r = required axial force

P_n = nominal column load capacity in LRFD steel design

P_p = nominal bearing capacity of concrete under base plate

P_u = factored column load calculated from load factors in LRFD steel design

r = radius of gyration

R = generic load quantity (force, shear, moment, etc.) for LRFD design

r = shorthand for rain or ice load

R_a = required strength (ASD)

R_n = nominal value (capacity) to be multiplied by ϕ in LRFD and divided by the safety factor Ω in ASD

R_{u} = factored design value for LRFD design

S = shorthand for snow load

$= section modulus

$S_{req'd}$ = section modulus required at allowable stress

$S_{req'd-adj}$ = section modulus required at allowable stress when moment is adjusted to include self weight

T_f = thickness of flange of wide flange

T_{min} = minimum thickness of column base plate

T_w = thickness of web of wide flange

T = torque (axial moment)

$= shorthand for thermal load

V = internal shear force

V_a = required shear (ASD)

V_{max} = maximum internal shear force

$V_{max-adj}$ = maximum internal shear force adjusted to include self weight

V_n = nominal shear strength capacity for LRFD beam design

V_u = maximum shear from factored loads for LRFD beam design

$w_{equivalent}$ = the equivalent distributed load derived from the maximum bending moment

$w_{self wt}$ = name for distributed load from self weight of member

W = shorthand for wind load

X = column base plate design value

Z = plastic section modulus of a steel beam

$Z_{req'd}$ = plastic section modulus required

Z_x = plastic section modulus of a steel beam with respect to the x axis

Δ_{actual} = actual beam deflection

$\Delta_{allowable}$ = allowable beam deflection

Δ_{limit} = allowable beam deflection limit

Δ_{max} = maximum beam deflection

ε_y = yield strain (no units)

ϕ = resistance factor

ϕ_b = resistance factor for bending for LRFD

ϕ_c = resistance factor for compression for LRFD

ϕ_v = resistance factor for shear for LRFD

λ = column base plate design value

γ = load factor in LRFD design

π = pi (3.1415 radians or 180°)

ρ = radial distance

Ω = safety factor for ASD
Steel Design

Structural design standards for steel are established by the *Manual of Steel Construction* published by the American Institute of Steel Construction, and uses **Allowable Stress Design** and **Load and Factor Resistance Design**. With the 13th edition, both methods are combined in one volume which provides common requirements for analyses and design and requires the application of the same set of specifications.

Materials

American Society for Testing Materials (ASTM) is the organization responsible for material and other standards related to manufacturing. Materials meeting their standards are guaranteed to have the published strength and material properties for a designation.

A36 – carbon steel used for plates, angles
\[F_y = 36 \text{ ksi}, F_u = 58 \text{ ksi}, E = 29,000 \text{ ksi} \]

A572 – high strength low-alloy used for some beams
\[F_y = 60 \text{ ksi}, F_u = 75 \text{ ksi}, E = 29,000 \text{ ksi} \]

A992 – for building framing used for most beams
\[F_y = 50 \text{ ksi}, F_u = 65 \text{ ksi}, E = 29,000 \text{ ksi} \]

(A572 Grade 60 has the same properties as A992)

ASD

\[R_a \leq \frac{R_n}{\Omega} \]

where
- \(R_a \) = required strength (dead or live; force, moment or stress)
- \(R_n \) = nominal strength specified for ASD
- \(\Omega \) = safety factor

Factors of Safety are applied to the limit stresses for allowable stress values:

- bending (braced, \(L_b < L_p \)) \(\Omega = 1.67 \)
- bending (unbraced, \(L_p < L_b \) and \(L_b > L_r \)) \(\Omega = 1.67 \) (nominal moment reduces)
- shear (beams) \(\Omega = 1.5 \) or 1.67
- shear (bolts) \(\Omega = 2.00 \) (tabular nominal strength)
- shear (welds) \(\Omega = 2.00 \)

- \(L_b \) is the unbraced length between bracing points, laterally
- \(L_p \) is the limiting laterally unbraced length for the limit state of yielding
- \(L_r \) is the limiting laterally unbraced length for the limit state of inelastic lateral-torsional buckling
LRFD

\[R_u \leq \phi R_n \]

where \[\phi = \text{resistance factor} \]
\[\gamma = \text{load factor for the type of load} \]
\[R = \text{load (dead or live; force, moment or stress)} \]
\[R_u = \text{factored load (moment or stress)} \]
\[R_n = \text{nominal load (ultimate capacity; force, moment or stress)} \]

Nominal strength is defined as the capacity of a structure or component to resist the effects of loads, as determined by computations using specified material strengths (such as yield strength, \(F_y \), or ultimate strength, \(F_u \)) and dimensions and formulas derived from accepted principles of structural mechanics or by field tests or laboratory tests of scaled models, allowing for modeling effects and differences between laboratory and field conditions.

Factored Load Combinations

The design strength, \(\phi R_n \), of each structural element or structural assembly must equal or exceed the design strength based on the ASCE-7 combinations of factored nominal loads:

- \(1.4D \)
- \(1.2D + 1.6L + 0.5(L_n or S or R) \)
- \(1.2D + 1.6(L_n or S or R) + (L or 0.5W) \)
- \(1.2D + 1.0W + L + 0.5(L_n or S or R) \)
- \(1.2D + 1.0E + L + 0.2S \)
- \(0.9D + 1.0W \)
- \(0.9D + 1.0E \)

Criteria for Design of Beams

Allowable normal stress or normal stress from LRFD should not be exceeded:

\[F_b or \phi F_n \geq f_b = \frac{M_c}{I} \]

\((M_u \leq M_n / \Omega \text{ or } M_u \leq \phi_n M_n) \)

Knowing \(M \) and \(F_y \), the minimum plastic section modulus fitting the limit is:

\[Z_{req'd} \geq \frac{M_a}{F_y \Omega} \]

\[(S_{req'd} \geq \frac{M}{F_b}) \]

Besides strength, we also need to be concerned about serviceability. This involves things like limiting deflections & cracking, controlling noise and vibrations, preventing excessive settlements of foundations and durability. When we know about a beam section and its material, we can determine beam deformations.
Determining Maximum Bending Moment

Drawing V and M diagrams will show us the maximum values for design. Computer applications are very helpful.

Determining Maximum Bending Stress

For a prismatic member (constant cross section), the maximum normal stress will occur at the maximum moment.

For a non-prismatic member, the stress varies with the cross section AND the moment.

Deflections

Elastic curve equations can be found in handbooks, textbooks, design manuals, etc...Computer programs can be used as well.

Elastic curve equations can be superpositioned ONLY if the stresses are in the elastic range. *The deflected shape is roughly the same shape flipped as the bending moment diagram but is constrained by supports and geometry.*

Allowable Deflection Limits

All building codes and design codes limit deflection for beam types and damage that could happen based on service condition and severity. \[\Delta_{\text{actual}} \leq \Delta_{\text{allowable}} = \frac{L}{\text{value}} \]

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial (no ceiling)</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>

* IBC 2012 states that DL for steel elements shall be taken as zero

Lateral Buckling

With compression stresses in the top of a beam, a sudden “popping” or buckling can happen even at low stresses. In order to prevent it, we need to brace it along the top, or laterally brace it, or provide a bigger \(I_y \).
Local Buckling in Steel I Beams– Web Crippling or Flange Buckling

Concentrated forces on a steel beam can cause the web to buckle (called web crippling). Web stiffeners under the beam loads and bearing plates at the supports reduce that tendency. Web stiffeners also prevent the web from shearing in plate girders.

The maximum support load and interior load can be determined from:

\[P_{n\text{(max-end)}} = (2.5k + N)F_{yw}t_w \]
\[P_{n\text{(interior)}} = (5k + N)F_{yw}t_w \]

where \(t_w \) = thickness of the web
\(N \) = bearing length
\(k \) = dimension to fillet found in beam section tables

\[\phi = 1.00 \text{ (LRFD)} \quad \Omega = 1.50 \text{ (ASD)} \]

Beam Loads & Load Tracing

In order to determine the loads on a beam (or girder, joist, column, frame, foundation...) we can start at the top of a structure and determine the *tributary area* that a load acts over and the beam needs to support. Loads come from material weights, people, and the environment. This area is assumed to be from half the distance to the next beam over to halfway to the next beam.

The reactions must be supported by the next lower structural element *ad infinitum*, to the ground.

LRFD Bending or Flexure

For determining the flexural design strength, \(\phi_bM_n \), for resistance to pure bending (no axial load) in most flexural members where the following conditions exist, a single calculation will suffice:

\[\Sigma \gamma_i R_i = M_n \leq \phi_b M_n = 0.9F_{y}Z \]
where

\[M_u = \text{maximum moment from factored loads} \]
\[\phi_b = \text{resistance factor for bending} = 0.9 \]
\[M_n = \text{nominal moment (ultimate capacity)} \]
\[F_y = \text{yield strength of the steel} \]
\[Z = \text{plastic section modulus} \]

Plastic Section Modulus

Plastic behavior is characterized by a yield point and an increase in strain with no increase in stress.

Internal Moments and Plastic Hinges

Plastic hinges can develop when all of the material in a cross section sees the yield stress. Because all the material at that section can strain without any additional load, the member segments on either side of the hinge can rotate, possibly causing instability.

For a rectangular section:

Elastic to \(f_y \):

\[
M_y = \frac{I}{c} f_y = \frac{bh^2}{6} f_y = \frac{b(2c)^2}{6} f_y = \frac{2bc^2}{3} f_y
\]

Fully Plastic: \(M_{ult} \) or \(M_p = bc^2 f_y = \frac{3}{2} M_y \)

For a non-rectangular section and internal equilibrium at \(\sigma_y \), the n.a. will not necessarily be at the centroid. The n.a. occurs where the \(A_{tension} = A_{compression} \). The reactions occur at the centroids of the tension and compression areas.

\[
A_{tension} = A_{compression}
\]
Instability from Plastic Hinges:

![Diagram of plastic hinges]

Shape Factor:

The ratio of the plastic moment to the elastic moment at yield:

\[
\frac{M_p}{M_y} = k \quad \text{for a rectangle}
\]

\[
\kappa = \frac{3}{2} \quad \text{for a rectangle}
\]

\[
\kappa \approx 1.1 \quad \text{for an I beam}
\]

Plastic Section Modulus

\[
Z = \frac{M_p}{f_y} \quad \text{and} \quad k = \frac{Z}{S}
\]

Design for Shear

\[
V_a \leq V_n / \Omega \quad \text{or} \quad V_a \leq \phi V_n
\]

The nominal shear strength is dependent on the cross section shape. Case 1: With a thick or stiff web, the shear stress is resisted by the web of a wide flange shape (with the exception of a handful of W’s). Case 2: When the web is not stiff for doubly symmetric shapes, singly symmetric shapes (like channels) (excluding round high strength steel shapes), inelastic web buckling occurs. When the web is very slender, elastic web buckling occurs, reducing the capacity even more:

Case 1)

\[
\frac{h}{t_w} \leq 2.24 \frac{E}{F_y} \sqrt{\frac{V_n}{0.6F_{yw}A_w}} \quad \phi_V = 1.00 \quad (LRFD) \quad \Omega = 1.50 \quad (ASD)
\]

where \(h \) equals the clear distance between flanges less the fillet or corner radius for rolled shapes

\(V_n = \) nominal shear strength

\(F_{yw} = \) yield strength of the steel in the web

\(A_w = t_wd = \) area of the web

Case 2)

\[
\frac{h}{t_w} > 2.24 \frac{E}{F_y} \sqrt{\frac{V_n}{0.6F_{yw}A_wC_v}} \quad \phi_V = 0.9 \quad (LRFD) \quad \Omega = 1.67 \quad (ASD)
\]

where \(C_v \) is a reduction factor (1.0 or less by equation)
Design for Flexure

\[M_a \leq M_n / \Omega \quad \text{or} \quad M_a \leq \phi_b M_n \]
\[\phi_b = 0.90 \quad (LRFD) \quad \Omega = 1.67 \quad (ASD) \]

The nominal flexural strength \(M_n \) is the lowest value obtained according to the limit states of

1. yielding, limited at length \(L_p = 1.76 r_y \sqrt{\frac{E}{F_y}} \), where \(r_y \) is the radius of gyration in \(y \)
2. lateral-torsional buckling limited at length \(L_r \)
3. flange local buckling
4. web local buckling

Beam design charts show available moment, \(M_n/\Omega \) and \(\phi_b M_n \), for unbraced length, \(L_{lb} \), of the compression flange in one-foot increments from 1 to 50 ft. for values of the bending coefficient \(C_b = 1 \). For values of \(1 < C_b \leq 2.3 \), the required flexural strength \(M_u \) can be reduced by dividing it by \(C_b \). \(C_b = 1 \) when the bending moment at any point within an unbraced length is larger than that at both ends of the length. \(C_b \) of 1 is conservative and permitted to be used in any case. When the free end is unbraced in a cantilever or overhang, \(C_b = 1 \). The full formula is provided below.

NOTE: the self weight is not included in determination of \(\phi_b M_n \)

Compact Sections

For a laterally braced compact section (one for which the plastic moment can be reached before local buckling) only the limit state of yielding is applicable. For unbraced compact beams and non-compact tees and double angles, only the limit states of yielding and lateral-torsional buckling are applicable.

Compact sections meet the following criteria:

\[\frac{b_f}{2t_f} \leq 0.38 \sqrt{\frac{E}{F_y}} \quad \text{and} \quad \frac{h_c}{t_w} \leq 3.76 \sqrt{\frac{E}{F_y}} \]

where:

- \(b_f \) = flange width in inches
- \(t_f \) = flange thickness in inches
- \(E \) = modulus of elasticity in ksi
- \(F_y \) = minimum yield stress in ksi
- \(h_c \) = height of the web in inches
- \(t_w \) = web thickness in inches

With lateral-torsional buckling the nominal flexural strength is

\[M_a = C_b \left[M_p - (M_p - 0.7 F_y S_s \left(\frac{L_p - L_p}{L_r - L_p} \right)) \right] \leq M_p \]

where \(M_p = M_n = F_y Z_x \)
and C_b is a modification factor for non-uniform moment diagrams where, when both ends of the beam segment are braced:

$$C_b = \frac{12.5M_{\text{max}}}{2.5M_{\text{max}} + 3M_A + 4M_B + 3M_C}$$

M_{max} = absolute value of the maximum moment in the unbraced beam segment

M_A = absolute value of the moment at the quarter point of the unbraced beam segment

M_B = absolute value of the moment at the center point of the unbraced beam segment

M_C = absolute value of the moment at the three quarter point of the unbraced beam segment length.

Available Flexural Strength Plots

Plots of the available moment for the unbraced length for wide flange sections are useful to find sections to satisfy the design criteria of $M_a \leq \frac{M_u}{\Omega}$ or $M_a \leq \phi M_u$. The maximum moment that can be applied on a beam (taking self weight into account), M_a or M_u, can be plotted against the unbraced length, L_b. The limit L_p is indicated by a solid dot (●), while L_r is indicated by an open dot (○). Solid lines indicate the most economical, while dashed lines indicate there is a lighter section that could be used. C_b, which is a lateral torsional buckling modification factor for non-zero moments at the ends, is 1 for simply supported beams (0 moments at the ends).

(see figure)
Design Procedure

The intent is to find the most lightweight member (which is economical) satisfying the section modulus size.

1. Determine the unbraced length to choose the limit state (yielding, lateral torsional buckling or more extreme) and the factor of safety and limiting moments. Determine the material.

2. Draw V & M, finding V_{max} and M_{max} for unfactored loads (ASD, V_a & M_a) or from factored loads (LRFD, V_u & M_u).

3. Calculate Z_{req'd} when yielding is the limit state. This step is equivalent to determining if

\[f_b = \frac{M_{max}}{S} \leq F_b, \quad Z_{req'd} \geq \frac{M_{max}}{F_b} = \frac{M_{max}}{F_{\gamma}} \frac{1}{\Omega} \quad \text{and} \quad Z_{req'd} \geq \frac{M_{u}}{\phi_y F_{\gamma}} \]

\[M_a \leq M_n / \Omega \quad \text{or} \quad M_u \leq \phi_b M_n \]

If the limit state is something other than yielding, determine the nominal moment, M_{sn}, or use plots of available moment to unbraced length, L_b.

4. For steel: use the section charts to find a trial Z and remember that the beam self weight (the second number in the section designation) will increase Z_{req'd}. The design charts show the lightest section within a grouping of similar Z's.

5. Evaluate horizontal shear using V_{max}. This step is equivalent to determining if \(f_v \leq F_v \) is satisfied to meet the design criteria that \(V_a \leq V_n / \Omega \) or \(V_u \leq \phi_v V_n \).

For I beams: \[f_{v-max} = \frac{3V}{2A} \approx \frac{V}{A_{web}} = \frac{V}{t_w d} \quad V_n = 0.6F_{yw}A_w \quad \text{or} \quad V_n = 0.6F_{yw}A_w C_v \]

Others: \[f_{v-max} = \frac{VQ}{I_b} \]

6. Provide adequate bearing area at supports. This step is equivalent to determining if \(f_p = \frac{P}{A} \leq F_p \) is satisfied to meet the design criteria that \(P_a \leq P_n / \Omega \) or \(P_u \leq \phi_p P_n \).

7. Evaluate shear due to torsion \(f_v = \frac{T \rho}{J} \frac{T}{c_t ab^2} \leq F_v \) (circular section or rectangular)

8. Evaluate the deflection to determine if \(\Delta_{max,LL} \leq \Delta_{LL-allowed} \quad \text{and/or} \quad \Delta_{max,Total} \leq \Delta_{Total-allowed} \)

**** note: when \(\Delta_{calculated} > \Delta_{limit} \), \(I_{required} \) can be found with: \(I_{req'd} \geq \frac{\Delta_{no\big} \Delta_{limit}}{\Delta_{trial}} \)

**** Determine the "updated" \(V_{max} \) and \(M_{max} \) including the beam self weight, and verify that the updated \(Z_{req'd} \) has been met.********
FOR ANY EVALUATION:

Redesign (with a new section) at any point that a stress or serviceability criteria is NOT satisfied and re-evaluate each condition until it is satisfactory.

Load Tables for Uniformly Loaded Joists & Beams

Tables exist for the common loading situation of uniformly distributed load. The tables either provide the safe distributed load based on bending and deflection limits, they give the allowable span for specific live and dead loads including live load deflection limits. If the load is not uniform, an equivalent uniform load can be calculated from the maximum moment equation:

\[
M_{\text{max}} = \frac{w_{\text{equivalent}} L^2}{8}
\]

If the deflection limit is less, the design live load to check against allowable must be increased, ex.

\[
w_{\text{adjusted}} = \left(\frac{L}{360} \right) \left(\frac{L}{400} \right) \text{table limit} \quad \text{wanted}
\]

Criteria for Design of Columns

If we know the loads, we can select a section that is adequate for strength & buckling.
If we know the length, we can find the limiting load satisfying strength & buckling.

Design for Compression

American Institute of Steel Construction (AISC) Manual 14th ed:

\[
P_u \leq \frac{P_n}{\Omega} \quad \text{or} \quad P_u \leq \phi P_n
\]

where

\[
P_u = \sum \gamma_i P_i
\]

\(\gamma\) is a load factor
\(P\) is a load type
\(\phi\) is a resistance factor
\(P_n\) is the nominal load capacity (strength)

\[\phi = 0.90 \text{ (LRFD)} \quad \Omega = 1.67 \text{ (ASD)}\]

For compression \(P_n = F_{cr} A_g\)

where: \(A_g\) is the cross section area and \(F_{cr}\) is the flexural buckling stress
The flexural buckling stress, \(F_{cr} \), is determined as follows:

when \(\frac{KL}{r} \leq 4.71 \left(\frac{E}{F_y} \right) \) or \((F_e \geq 0.44F_y) \):

\[
F_{cr} = \left[\frac{F_e}{0.658F_e} \right] F_y
\]

when \(\frac{KL}{r} > 4.71 \left(\frac{E}{F_y} \right) \) or \((F_e < 0.44F_y) \):

\[
F_{cr} = 0.877F_e
\]

where \(F_e \) is the elastic critical buckling stress:

\[
F_e = \frac{\pi^2E}{(KL/r)^2}
\]

Design Aids

Tables exist for the value of the flexural buckling stress based on slenderness ratio. In addition, tables are provided in the AISC Manual for Available Strength in Axial Compression based on the effective length with respect to least radius of gyration, \(r_y \). If the critical effective length is about the largest radius of gyration, \(r_x \), it can be turned into an effective length about the y axis by dividing by the fraction \(r_x/r_y \).
Procedure for Analysis

1. Calculate KL/r for each axis (if necessary). The largest will govern the buckling load.
2. Find F_{cr} as a function of KL/r from the appropriate equation (above) or table.
3. Compute $P_n = F_{cr} \cdot A_g$
 or alternatively compute $f_c = P_d/A$ or P_u/A
4. Is the design satisfactory?
 Is $P_a \leq P_n/\Omega$ or $P_u \leq \phi P_n$? ⇒ yes, it is; no, it is no good
 or Is $f_c \leq F_{cr}/\Omega$ or ϕF_{cr}? ⇒ yes, it is; no, it is no good

Procedure for Design

1. Guess a size by picking a section.
2. Calculate KL/r for each axis (if necessary). The largest will govern the buckling load.
3. Find F_{cr} as a function of KL/r from appropriate equation (above) or table.
4. Compute $P_n = F_{cr} \cdot A_g$
 or alternatively compute $f_c = P_d/A$ or P_u/A
5. Is the design satisfactory?
 Is $P \leq P_n/\Omega$ or $P_u \leq \phi P_n$? yes, it is; no, pick a bigger section and go back to step 2.
 Is $f_c \leq F_{cr}/\Omega$ or ϕF_{cr}? ⇒ yes, it is; no, pick a bigger section and go back to step 2.
6. Check design efficiency by calculating percentage of stress used:
 \[\frac{P_a}{P_n} \cdot 100\% \text{ or } \frac{P_a}{\phi P_n} \cdot 100\% \]
 If value is between 90-100\%, it is efficient.
 If values is less than 90\%, pick a smaller section and go back to step 2.

Columns with Bending (Beam-Columns)

In order to design an adequate section for allowable stress, we have to start somewhere:

1. Make assumptions about the limiting stress from:
 - buckling
 - axial stress
 - combined stress

1. See if we can find values for r or A or Z.
2. Pick a trial section based on if we think r or A is going to govern the section size.
3. Analyze the stresses and compare to allowable using the allowable stress method or interaction formula for eccentric columns.

4. Did the section pass the stress test?
 - If not, do you increase \(r \) or \(A \) or \(Z \)?
 - If so, is the difference really big so that you could decrease \(r \) or \(A \) or \(Z \) to make it more efficient (economical)?

5. Change the section choice and go back to step 4. Repeat until the section meets the stress criteria.

Design for Combined Compression and Flexure:

The interaction of compression and bending are included in the form for two conditions based on the size of the required axial force to the available axial strength. This is notated as \(P_r \) (either \(P \) from ASD or \(P_u \) from LRFD) for the axial force being supported, and \(P_c \) (either \(P_n/\Omega \) for ASD or \(\phi_c P_n \) for LRFD). The increased bending moment due to the \(P\Delta \) effect must be determined and used as the moment to resist.

For \(\frac{P_r}{P_c} \geq 0.2 \):

\[
\frac{P}{P_n} + \frac{8}{9} \left(\frac{M_x}{M_{nx}/\Omega} + \frac{M_y}{M_{ny}/\Omega} \right) \leq 1.0
\]

\[
\frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}/\Omega} + \frac{M_{uy}}{\phi_b M_{ny}/\Omega} \right) \leq 1.0
\]

(ASD) (LRFD)

For \(\frac{P_r}{P_c} < 0.2 \):

\[
\frac{P}{2P_n} + \left(\frac{M_x}{M_{nx}/\Omega} + \frac{M_y}{M_{ny}/\Omega} \right) \leq 1.0
\]

\[
\frac{P_u}{2\phi_c P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}/\Omega} + \frac{M_{uy}}{\phi_b M_{ny}/\Omega} \right) \leq 1.0
\]

(ASD) (LRFD)

where:

- for compression \(\phi_c = 0.90 \) (LRFD) \(\Omega = 1.67 \) (ASD)
- for bending \(\phi_b = 0.90 \) (LRFD) \(\Omega = 1.67 \) (ASD)

For a braced condition, the moment magnification factor \(B_1 \) is determined by

\[
B_1 = \frac{C_m}{1 - \alpha \left(\frac{P_u}{P_{el}} \right)} \geq 1.0
\]

where \(C_m \) is a modification factor accounting for end conditions

When not subject to transverse loading between supports in plane of bending:

\[= 0.6 - 0.4 \ (M_1/M_2) \] where \(M_1 \) and \(M_2 \) are the end moments and \(M_1 < M_2 \). \(M_1/M_2 \) is positive when the member is bent in reverse curvature (same direction), negative when bent in single curvature.

When there is transverse loading between the two ends of a member:

\[= 0.85, \] members with restrained (fixed) ends
\[= 1.00, \] members with unrestrained ends

\(\alpha = 1.00 \) (LRFD), 1.60 (ASD)

\(P_{el} = \frac{\pi^2 EA}{(Kl/r)^2} \)
Criteria for Design of Connections and Tension Members

Refer to the specific note set.

Criteria for Design of Column Base Plates

Column base plates are designed for bearing on the concrete (concrete capacity) and flexure because the column “punches” down the plate and it could bend upward near the edges of the column (shown as $0.8b_f$ and $0.95d$). The plate dimensions are B and N and are preferably in full inches with thicknesses in multiples of 1/8 inches.

LRFD minimum thickness:

$$t_{\text{min}} = l \sqrt{\frac{2P_u}{0.9F_y BN}}$$

where l is the larger of m, n and $\lambda n'$

$$m = \frac{N - 0.95d}{2} \quad n = \frac{B - 0.8b_f}{2}$$

$$n' = \frac{\sqrt{db_f}}{4} \quad \lambda = \frac{2\sqrt{X}}{(1 + \sqrt{1 - X})} \leq 1$$

where X depends on the concrete bearing capacity of $\phi_c P_p$, with

$$\phi_c = 0.65 \quad P_p = 0.85 f'_c A$$

$$X = \frac{4db_f}{(d + b_f)^2} \cdot \frac{P_u}{\phi_c P_p} = \frac{4db_f}{(d + b_f)^2} \cdot \frac{P_u}{\phi_c (0.85 f'_c) BN}$$
Listing of W shapes in Descending Order of Z_x for Beam Design

<table>
<thead>
<tr>
<th>Z_x – US (in.3)</th>
<th>I_x – US (in.4)</th>
<th>Section</th>
<th>I_x – SI (106mm.4)</th>
<th>Z_x – SI (105mm.3)</th>
<th>Z_x – US (in.3)</th>
<th>I_x – US (in.4)</th>
<th>Section</th>
<th>I_x – SI (106mm.4)</th>
<th>Z_x – SI (105mm.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>514 7450 W32X141</td>
<td>3100 8420</td>
<td>289 3100</td>
<td>W24X104 1290 4740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>511 5680 W24X176</td>
<td>2360 8370</td>
<td>287 1900</td>
<td>W14X159 791 4700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509 7800 W36X135</td>
<td>3250 8340</td>
<td>283 3610</td>
<td>W30X90 1500 4640</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 6680 W30X148</td>
<td>2780 8190</td>
<td>280 3000</td>
<td>W24X103 1250 4590</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>490 4330 W18X211</td>
<td>1800 8030</td>
<td>279 2670</td>
<td>W21X111 1110 4570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>487 3400 W14X257</td>
<td>1420 7980</td>
<td>278 3270</td>
<td>W27X94 1360 4560</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>481 3110 W12X279</td>
<td>1290 7880</td>
<td>275 1650</td>
<td>W12X170 687 4510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>476 4730 W21X182</td>
<td>1970 7800</td>
<td>262 2190</td>
<td>W18X119 912 4290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>468 5170 W24X162</td>
<td>2150 7670</td>
<td>260 1710</td>
<td>W14X145 712 4260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>467 6710 W33X130</td>
<td>2790 7650</td>
<td>254 2700</td>
<td>W24X94 1120 4160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>464 5660 W27X146</td>
<td>2360 7600</td>
<td>253 2420</td>
<td>W21X101 1010 4150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>442 3870 W18X192</td>
<td>1610 7240</td>
<td>244 2850</td>
<td>W27X84 1190 4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>437 5770 W30X132</td>
<td>2400 7160</td>
<td>243 1430</td>
<td>W12X152 595 3980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>436 3010 W14X233</td>
<td>1250 7140</td>
<td>234 1530</td>
<td>W14X132 637 3830</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>432 4280 W21X166</td>
<td>1780 7080</td>
<td>230 1910</td>
<td>W18X106 795 3770</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>428 2720 W12X252</td>
<td>1130 7010</td>
<td>224 2370</td>
<td>W24X84 986 3670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>416 5480 W24X146</td>
<td>1910 6850</td>
<td>221 2070</td>
<td>W21X93 862 3620</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>415 5900 W33X118</td>
<td>2460 6800</td>
<td>214 1240</td>
<td>W12X136 516 3510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>408 5360 W30X124</td>
<td>2230 6690</td>
<td>212 1380</td>
<td>W14X120 574 3470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>398 3450 W18X175</td>
<td>1440 6520</td>
<td>211 1750</td>
<td>W18X97 728 3460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395 4760 W27X129</td>
<td>1980 6470</td>
<td>200 2100</td>
<td>W24X76 874 3280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>390 2660 W14X211</td>
<td>1110 6390</td>
<td>198 1490</td>
<td>W16X100 620 3240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>386 2420 W12X230</td>
<td>1010 6330</td>
<td>196 1830</td>
<td>W21X83 762 3210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>378 4930 W30X116</td>
<td>2050 6190</td>
<td>192 1240</td>
<td>W14X109 516 3150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>373 3630 W21X147</td>
<td>1510 6110</td>
<td>186 1530</td>
<td>W18X86 637 3050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370 4020 W24X131</td>
<td>1670 6060</td>
<td>185 1070</td>
<td>W12X120 445 3050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356 3060 W18X158</td>
<td>1270 5830</td>
<td>177 1830</td>
<td>W24X68 762 2900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>355 2400 W14X193</td>
<td>999 5820</td>
<td>174 1300</td>
<td>W16X89 541 2870</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>348 2140 W12X210</td>
<td>891 5700</td>
<td>173 1110</td>
<td>W14X99 462 2830</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>346 4470 W30X108</td>
<td>1860 5670</td>
<td>169 1600</td>
<td>W21X73 666 2820</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>343 4080 W27X114</td>
<td>1700 5620</td>
<td>164 933</td>
<td>W12X106 388 2690</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333 3220 W21X132</td>
<td>1340 5460</td>
<td>160 1330</td>
<td>W18X76 554 2670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>327 3540 W24X117</td>
<td>1470 5360</td>
<td>159 1480</td>
<td>W21X68 616 2620</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>322 2750 W18X143</td>
<td>1140 5280</td>
<td>157 999</td>
<td>W14X90 416 2570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320 2140 W14X176</td>
<td>891 5240</td>
<td>153 1550</td>
<td>W24X62 645 2510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312 3990 W30X99</td>
<td>1660 5110</td>
<td>147 1110</td>
<td>W16X77 462 2460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>311 1890 W12X190</td>
<td>787 5100</td>
<td>147 833</td>
<td>W12X96 347 2410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>307 2960 W21X122</td>
<td>1230 5030</td>
<td>146 716</td>
<td>W10X112 298 2410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305 3620 W27X102</td>
<td>1510 5000</td>
<td>146 1170</td>
<td>W18X71 487 2390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Listing of W Shapes in Descending order of Z_x for Beam Design (Continued)

<table>
<thead>
<tr>
<th>Z_x – US (in.3)</th>
<th>I$_x$ – US (in.4)</th>
<th>Section</th>
<th>I$_x$ – SI (106mm.4)</th>
<th>Z_x – SI (106mm.3)</th>
<th>I$_x$ – US (in.4)</th>
<th>Section</th>
<th>I$_x$ – SI (106mm.4)</th>
<th>Z_x – SI (106mm.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>1330</td>
<td>W21X62</td>
<td>554</td>
<td>2360</td>
<td>66.5</td>
<td>510</td>
<td>W18X35</td>
<td>212</td>
</tr>
<tr>
<td>139</td>
<td>881</td>
<td>W14X82</td>
<td>367</td>
<td>2280</td>
<td>64.0</td>
<td>348</td>
<td>W12X45</td>
<td>145</td>
</tr>
<tr>
<td>133</td>
<td>1350</td>
<td>W24X55</td>
<td>562</td>
<td>2200</td>
<td>63.5</td>
<td>448</td>
<td>W16X36</td>
<td>186</td>
</tr>
<tr>
<td>132</td>
<td>1070</td>
<td>W18X65</td>
<td>445</td>
<td>2180</td>
<td>61.5</td>
<td>385</td>
<td>W14X38</td>
<td>160</td>
</tr>
<tr>
<td>131</td>
<td>740</td>
<td>W12X87</td>
<td>308</td>
<td>2160</td>
<td>59.4</td>
<td>228</td>
<td>W8X58</td>
<td>94.9</td>
</tr>
<tr>
<td>130</td>
<td>954</td>
<td>W16X67</td>
<td>397</td>
<td>2130</td>
<td>57.0</td>
<td>307</td>
<td>W12X40</td>
<td>128</td>
</tr>
<tr>
<td>129</td>
<td>623</td>
<td>W10X100</td>
<td>259</td>
<td>2130</td>
<td>54.7</td>
<td>248</td>
<td>W10X45</td>
<td>103</td>
</tr>
<tr>
<td>129</td>
<td>1170</td>
<td>W21X57</td>
<td>487</td>
<td>2110</td>
<td>54.5</td>
<td>340</td>
<td>W14X34</td>
<td>142</td>
</tr>
<tr>
<td>126</td>
<td>1140</td>
<td>W21X55</td>
<td>475</td>
<td>2060</td>
<td>53.7</td>
<td>375</td>
<td>W16X31</td>
<td>156</td>
</tr>
<tr>
<td>126</td>
<td>795</td>
<td>W14X74</td>
<td>331</td>
<td>2060</td>
<td>51.2</td>
<td>285</td>
<td>W12X35</td>
<td>119</td>
</tr>
<tr>
<td>123</td>
<td>984</td>
<td>W18X60</td>
<td>410</td>
<td>2020</td>
<td>49.0</td>
<td>184</td>
<td>W8X48</td>
<td>76.6</td>
</tr>
<tr>
<td>118</td>
<td>662</td>
<td>W12X79</td>
<td>276</td>
<td>1950</td>
<td>47.2</td>
<td>291</td>
<td>W14X30</td>
<td>121</td>
</tr>
<tr>
<td>115</td>
<td>722</td>
<td>W14X68</td>
<td>301</td>
<td>1880</td>
<td>46.7</td>
<td>209</td>
<td>W10X39</td>
<td>87.0</td>
</tr>
<tr>
<td>113</td>
<td>534</td>
<td>W10X88</td>
<td>222</td>
<td>1850</td>
<td>44.2</td>
<td>301</td>
<td>W16X26</td>
<td>125</td>
</tr>
<tr>
<td>112</td>
<td>890</td>
<td>W18X55</td>
<td>370</td>
<td>1840</td>
<td>43.0</td>
<td>238</td>
<td>W12X30</td>
<td>99.1</td>
</tr>
<tr>
<td>110</td>
<td>984</td>
<td>W21X50</td>
<td>410</td>
<td>1800</td>
<td>40.1</td>
<td>245</td>
<td>W14X26</td>
<td>102</td>
</tr>
<tr>
<td>108</td>
<td>597</td>
<td>W12X72</td>
<td>248</td>
<td>1770</td>
<td>39.7</td>
<td>146</td>
<td>W8X40</td>
<td>60.8</td>
</tr>
<tr>
<td>107</td>
<td>959</td>
<td>W21X48</td>
<td>399</td>
<td>1750</td>
<td>38.5</td>
<td>171</td>
<td>W10X33</td>
<td>71.2</td>
</tr>
<tr>
<td>105</td>
<td>758</td>
<td>W16X57</td>
<td>316</td>
<td>1720</td>
<td>37.1</td>
<td>204</td>
<td>W12X26</td>
<td>84.9</td>
</tr>
<tr>
<td>102</td>
<td>640</td>
<td>W14X61</td>
<td>266</td>
<td>1670</td>
<td>36.6</td>
<td>170</td>
<td>W10X30</td>
<td>70.8</td>
</tr>
<tr>
<td>100</td>
<td>800</td>
<td>W18X50</td>
<td>333</td>
<td>1660</td>
<td>34.7</td>
<td>127</td>
<td>W8X35</td>
<td>52.9</td>
</tr>
<tr>
<td>96.8</td>
<td>455</td>
<td>W10X77</td>
<td>189</td>
<td>1600</td>
<td>33.2</td>
<td>199</td>
<td>W14X22</td>
<td>82.8</td>
</tr>
<tr>
<td>95.5</td>
<td>533</td>
<td>W12X65</td>
<td>222</td>
<td>1590</td>
<td>31.3</td>
<td>144</td>
<td>W10X26</td>
<td>59.9</td>
</tr>
<tr>
<td>95.4</td>
<td>843</td>
<td>W21X44</td>
<td>351</td>
<td>1560</td>
<td>30.4</td>
<td>110</td>
<td>W8X31</td>
<td>45.8</td>
</tr>
<tr>
<td>91.7</td>
<td>659</td>
<td>W16X50</td>
<td>274</td>
<td>1510</td>
<td>29.2</td>
<td>156</td>
<td>W12X22</td>
<td>64.9</td>
</tr>
<tr>
<td>90.6</td>
<td>712</td>
<td>W18X46</td>
<td>296</td>
<td>1490</td>
<td>27.1</td>
<td>98.0</td>
<td>W8X28</td>
<td>40.8</td>
</tr>
<tr>
<td>86.5</td>
<td>541</td>
<td>W14X53</td>
<td>225</td>
<td>1430</td>
<td>26.0</td>
<td>118</td>
<td>W10X22</td>
<td>49.1</td>
</tr>
<tr>
<td>86.4</td>
<td>475</td>
<td>W12X58</td>
<td>198</td>
<td>1420</td>
<td>24.6</td>
<td>130</td>
<td>W12X19</td>
<td>54.1</td>
</tr>
<tr>
<td>85.2</td>
<td>394</td>
<td>W10X68</td>
<td>164</td>
<td>1400</td>
<td>23.1</td>
<td>82.7</td>
<td>W8X24</td>
<td>34.4</td>
</tr>
<tr>
<td>82.1</td>
<td>586</td>
<td>W16X45</td>
<td>244</td>
<td>1350</td>
<td>21.4</td>
<td>96.3</td>
<td>W10X19</td>
<td>40.1</td>
</tr>
<tr>
<td>78.4</td>
<td>612</td>
<td>W18X40</td>
<td>255</td>
<td>1280</td>
<td>20.4</td>
<td>75.3</td>
<td>W8X21</td>
<td>31.3</td>
</tr>
<tr>
<td>78.1</td>
<td>484</td>
<td>W14X48</td>
<td>201</td>
<td>1280</td>
<td>20.1</td>
<td>103</td>
<td>W12x16</td>
<td>42.9</td>
</tr>
<tr>
<td>77.3</td>
<td>425</td>
<td>W12X53</td>
<td>177</td>
<td>1280</td>
<td>18.6</td>
<td>81.9</td>
<td>W10X17</td>
<td>34.1</td>
</tr>
<tr>
<td>74.4</td>
<td>341</td>
<td>W10X60</td>
<td>142</td>
<td>1220</td>
<td>17.3</td>
<td>88.6</td>
<td>W12X14</td>
<td>36.9</td>
</tr>
<tr>
<td>72.2</td>
<td>518</td>
<td>W16X40</td>
<td>216</td>
<td>1200</td>
<td>17.0</td>
<td>61.9</td>
<td>W8X18</td>
<td>25.8</td>
</tr>
<tr>
<td>71.8</td>
<td>391</td>
<td>W12X50</td>
<td>163</td>
<td>1180</td>
<td>15.9</td>
<td>68.9</td>
<td>W10X15</td>
<td>28.7</td>
</tr>
<tr>
<td>69.6</td>
<td>272</td>
<td>W8X67</td>
<td>113</td>
<td>1150</td>
<td>13.6</td>
<td>48.0</td>
<td>W8X15</td>
<td>20.0</td>
</tr>
<tr>
<td>69.4</td>
<td>428</td>
<td>W14X43</td>
<td>178</td>
<td>1140</td>
<td>12.6</td>
<td>53.8</td>
<td>W10X12</td>
<td>22.4</td>
</tr>
<tr>
<td>66.5</td>
<td>303</td>
<td>W10X54</td>
<td>126</td>
<td>1090</td>
<td>11.4</td>
<td>39.6</td>
<td>W8X13</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.87</td>
<td>30.8</td>
<td>W8X10</td>
<td>12.8</td>
</tr>
</tbody>
</table>
Available Critical Stress, ϕF_{cr}, for Compression Members, ksi ($F_y = 36$ ksi and $\phi = 0.90$)

<table>
<thead>
<tr>
<th>KL/r</th>
<th>ϕF_{cr}</th>
<th>KL/r</th>
<th>ϕF_{cr}</th>
<th>KL/r</th>
<th>ϕF_{cr}</th>
<th>KL/r</th>
<th>ϕF_{cr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32.4</td>
<td>41</td>
<td>29.7</td>
<td>81</td>
<td>22.9</td>
<td>121</td>
<td>15.0</td>
</tr>
<tr>
<td>2</td>
<td>32.4</td>
<td>42</td>
<td>29.5</td>
<td>82</td>
<td>22.7</td>
<td>122</td>
<td>14.8</td>
</tr>
<tr>
<td>3</td>
<td>32.4</td>
<td>43</td>
<td>29.4</td>
<td>83</td>
<td>22.5</td>
<td>123</td>
<td>14.6</td>
</tr>
<tr>
<td>4</td>
<td>32.4</td>
<td>44</td>
<td>29.3</td>
<td>84</td>
<td>22.3</td>
<td>124</td>
<td>14.4</td>
</tr>
<tr>
<td>5</td>
<td>32.4</td>
<td>45</td>
<td>29.1</td>
<td>85</td>
<td>22.1</td>
<td>125</td>
<td>14.2</td>
</tr>
<tr>
<td>6</td>
<td>32.3</td>
<td>46</td>
<td>29.0</td>
<td>86</td>
<td>22.0</td>
<td>126</td>
<td>14.0</td>
</tr>
<tr>
<td>7</td>
<td>32.3</td>
<td>47</td>
<td>28.8</td>
<td>87</td>
<td>21.8</td>
<td>127</td>
<td>13.9</td>
</tr>
<tr>
<td>8</td>
<td>32.3</td>
<td>48</td>
<td>28.7</td>
<td>88</td>
<td>21.6</td>
<td>128</td>
<td>13.7</td>
</tr>
<tr>
<td>9</td>
<td>32.3</td>
<td>49</td>
<td>28.6</td>
<td>89</td>
<td>21.4</td>
<td>129</td>
<td>13.5</td>
</tr>
<tr>
<td>10</td>
<td>32.2</td>
<td>50</td>
<td>28.4</td>
<td>90</td>
<td>21.2</td>
<td>130</td>
<td>13.3</td>
</tr>
<tr>
<td>11</td>
<td>32.2</td>
<td>51</td>
<td>28.3</td>
<td>91</td>
<td>21.0</td>
<td>131</td>
<td>13.1</td>
</tr>
<tr>
<td>12</td>
<td>32.2</td>
<td>52</td>
<td>28.1</td>
<td>92</td>
<td>20.8</td>
<td>132</td>
<td>12.9</td>
</tr>
<tr>
<td>13</td>
<td>32.1</td>
<td>53</td>
<td>27.9</td>
<td>93</td>
<td>20.5</td>
<td>133</td>
<td>12.8</td>
</tr>
<tr>
<td>14</td>
<td>32.1</td>
<td>54</td>
<td>27.8</td>
<td>94</td>
<td>20.3</td>
<td>134</td>
<td>12.6</td>
</tr>
<tr>
<td>15</td>
<td>32.0</td>
<td>55</td>
<td>27.6</td>
<td>95</td>
<td>20.1</td>
<td>135</td>
<td>12.4</td>
</tr>
<tr>
<td>16</td>
<td>32.0</td>
<td>56</td>
<td>27.5</td>
<td>96</td>
<td>19.9</td>
<td>136</td>
<td>12.2</td>
</tr>
<tr>
<td>17</td>
<td>31.9</td>
<td>57</td>
<td>27.3</td>
<td>97</td>
<td>19.7</td>
<td>137</td>
<td>12.0</td>
</tr>
<tr>
<td>18</td>
<td>31.9</td>
<td>58</td>
<td>27.1</td>
<td>98</td>
<td>19.5</td>
<td>138</td>
<td>11.9</td>
</tr>
<tr>
<td>19</td>
<td>31.8</td>
<td>59</td>
<td>27.0</td>
<td>99</td>
<td>19.3</td>
<td>139</td>
<td>11.7</td>
</tr>
<tr>
<td>20</td>
<td>31.7</td>
<td>60</td>
<td>26.8</td>
<td>100</td>
<td>19.1</td>
<td>140</td>
<td>11.5</td>
</tr>
<tr>
<td>21</td>
<td>31.7</td>
<td>61</td>
<td>26.6</td>
<td>101</td>
<td>18.9</td>
<td>141</td>
<td>11.4</td>
</tr>
<tr>
<td>22</td>
<td>31.6</td>
<td>62</td>
<td>26.5</td>
<td>102</td>
<td>18.7</td>
<td>142</td>
<td>11.2</td>
</tr>
<tr>
<td>23</td>
<td>31.5</td>
<td>63</td>
<td>26.3</td>
<td>103</td>
<td>18.5</td>
<td>143</td>
<td>11.0</td>
</tr>
<tr>
<td>24</td>
<td>31.4</td>
<td>64</td>
<td>26.1</td>
<td>104</td>
<td>18.3</td>
<td>144</td>
<td>10.9</td>
</tr>
<tr>
<td>25</td>
<td>31.4</td>
<td>65</td>
<td>25.9</td>
<td>105</td>
<td>18.1</td>
<td>145</td>
<td>10.7</td>
</tr>
<tr>
<td>26</td>
<td>31.3</td>
<td>66</td>
<td>25.8</td>
<td>106</td>
<td>17.9</td>
<td>146</td>
<td>10.6</td>
</tr>
<tr>
<td>27</td>
<td>31.2</td>
<td>67</td>
<td>25.6</td>
<td>107</td>
<td>17.7</td>
<td>147</td>
<td>10.5</td>
</tr>
<tr>
<td>28</td>
<td>31.1</td>
<td>68</td>
<td>25.4</td>
<td>108</td>
<td>17.5</td>
<td>148</td>
<td>10.3</td>
</tr>
<tr>
<td>29</td>
<td>31.0</td>
<td>69</td>
<td>25.2</td>
<td>109</td>
<td>17.3</td>
<td>149</td>
<td>10.2</td>
</tr>
<tr>
<td>30</td>
<td>30.9</td>
<td>70</td>
<td>25.0</td>
<td>110</td>
<td>17.1</td>
<td>150</td>
<td>10.0</td>
</tr>
<tr>
<td>31</td>
<td>30.8</td>
<td>71</td>
<td>24.8</td>
<td>111</td>
<td>16.9</td>
<td>151</td>
<td>9.91</td>
</tr>
<tr>
<td>32</td>
<td>30.7</td>
<td>72</td>
<td>24.7</td>
<td>112</td>
<td>16.7</td>
<td>152</td>
<td>9.78</td>
</tr>
<tr>
<td>33</td>
<td>30.6</td>
<td>73</td>
<td>24.5</td>
<td>113</td>
<td>16.5</td>
<td>153</td>
<td>9.65</td>
</tr>
<tr>
<td>34</td>
<td>30.5</td>
<td>74</td>
<td>24.3</td>
<td>114</td>
<td>16.3</td>
<td>154</td>
<td>9.53</td>
</tr>
<tr>
<td>35</td>
<td>30.4</td>
<td>75</td>
<td>24.1</td>
<td>115</td>
<td>16.2</td>
<td>155</td>
<td>9.40</td>
</tr>
<tr>
<td>36</td>
<td>30.3</td>
<td>76</td>
<td>23.9</td>
<td>116</td>
<td>16.0</td>
<td>156</td>
<td>9.28</td>
</tr>
<tr>
<td>37</td>
<td>30.1</td>
<td>77</td>
<td>23.7</td>
<td>117</td>
<td>15.8</td>
<td>157</td>
<td>9.17</td>
</tr>
<tr>
<td>38</td>
<td>30.0</td>
<td>78</td>
<td>23.5</td>
<td>118</td>
<td>15.6</td>
<td>158</td>
<td>9.05</td>
</tr>
<tr>
<td>39</td>
<td>29.9</td>
<td>79</td>
<td>23.3</td>
<td>119</td>
<td>15.4</td>
<td>159</td>
<td>8.94</td>
</tr>
<tr>
<td>40</td>
<td>29.8</td>
<td>80</td>
<td>23.1</td>
<td>120</td>
<td>15.2</td>
<td>160</td>
<td>8.82</td>
</tr>
</tbody>
</table>
Available Critical Stress, ϕF_{cr}, for Compression Members, ksi ($F_y = 50$ ksi and $\phi = 0.90$)

<table>
<thead>
<tr>
<th>KL/r</th>
<th>ϕF_{cr}</th>
<th>KL/r</th>
<th>ϕF_{cr}</th>
<th>KL/r</th>
<th>ϕF_{cr}</th>
<th>KL/r</th>
<th>ϕF_{cr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.0</td>
<td>41</td>
<td>39.8</td>
<td>81</td>
<td>27.9</td>
<td>121</td>
<td>15.4</td>
</tr>
<tr>
<td>2</td>
<td>45.0</td>
<td>42</td>
<td>39.6</td>
<td>82</td>
<td>27.5</td>
<td>122</td>
<td>15.2</td>
</tr>
<tr>
<td>3</td>
<td>45.0</td>
<td>43</td>
<td>39.3</td>
<td>83</td>
<td>27.2</td>
<td>123</td>
<td>14.9</td>
</tr>
<tr>
<td>4</td>
<td>44.9</td>
<td>44</td>
<td>39.1</td>
<td>84</td>
<td>26.9</td>
<td>124</td>
<td>14.7</td>
</tr>
<tr>
<td>5</td>
<td>44.9</td>
<td>45</td>
<td>38.8</td>
<td>85</td>
<td>26.5</td>
<td>125</td>
<td>14.5</td>
</tr>
<tr>
<td>6</td>
<td>44.9</td>
<td>46</td>
<td>38.5</td>
<td>86</td>
<td>26.2</td>
<td>126</td>
<td>14.2</td>
</tr>
<tr>
<td>7</td>
<td>44.8</td>
<td>47</td>
<td>38.3</td>
<td>87</td>
<td>25.9</td>
<td>127</td>
<td>14.0</td>
</tr>
<tr>
<td>8</td>
<td>44.8</td>
<td>48</td>
<td>38.0</td>
<td>88</td>
<td>25.5</td>
<td>128</td>
<td>13.8</td>
</tr>
<tr>
<td>9</td>
<td>44.7</td>
<td>49</td>
<td>37.8</td>
<td>89</td>
<td>25.2</td>
<td>129</td>
<td>13.6</td>
</tr>
<tr>
<td>10</td>
<td>44.7</td>
<td>50</td>
<td>37.5</td>
<td>90</td>
<td>24.9</td>
<td>130</td>
<td>13.4</td>
</tr>
<tr>
<td>11</td>
<td>44.6</td>
<td>51</td>
<td>37.2</td>
<td>91</td>
<td>24.6</td>
<td>131</td>
<td>13.2</td>
</tr>
<tr>
<td>12</td>
<td>44.5</td>
<td>52</td>
<td>36.9</td>
<td>92</td>
<td>24.2</td>
<td>132</td>
<td>13.0</td>
</tr>
<tr>
<td>13</td>
<td>44.4</td>
<td>53</td>
<td>36.6</td>
<td>93</td>
<td>23.9</td>
<td>133</td>
<td>12.8</td>
</tr>
<tr>
<td>14</td>
<td>44.4</td>
<td>54</td>
<td>36.4</td>
<td>94</td>
<td>23.6</td>
<td>134</td>
<td>12.6</td>
</tr>
<tr>
<td>15</td>
<td>44.3</td>
<td>55</td>
<td>36.1</td>
<td>95</td>
<td>23.3</td>
<td>135</td>
<td>12.4</td>
</tr>
<tr>
<td>16</td>
<td>44.2</td>
<td>56</td>
<td>35.8</td>
<td>96</td>
<td>22.9</td>
<td>136</td>
<td>12.2</td>
</tr>
<tr>
<td>17</td>
<td>44.1</td>
<td>57</td>
<td>35.5</td>
<td>97</td>
<td>22.6</td>
<td>137</td>
<td>12.0</td>
</tr>
<tr>
<td>18</td>
<td>43.9</td>
<td>58</td>
<td>35.2</td>
<td>98</td>
<td>22.3</td>
<td>138</td>
<td>11.9</td>
</tr>
<tr>
<td>19</td>
<td>43.8</td>
<td>59</td>
<td>34.9</td>
<td>99</td>
<td>22.0</td>
<td>139</td>
<td>11.7</td>
</tr>
<tr>
<td>20</td>
<td>43.7</td>
<td>60</td>
<td>34.6</td>
<td>100</td>
<td>21.7</td>
<td>140</td>
<td>11.5</td>
</tr>
<tr>
<td>21</td>
<td>43.6</td>
<td>61</td>
<td>34.3</td>
<td>101</td>
<td>21.3</td>
<td>141</td>
<td>11.4</td>
</tr>
<tr>
<td>22</td>
<td>43.4</td>
<td>62</td>
<td>34.0</td>
<td>102</td>
<td>21.0</td>
<td>142</td>
<td>11.2</td>
</tr>
<tr>
<td>23</td>
<td>43.3</td>
<td>63</td>
<td>33.7</td>
<td>103</td>
<td>20.7</td>
<td>143</td>
<td>11.0</td>
</tr>
<tr>
<td>24</td>
<td>43.1</td>
<td>64</td>
<td>33.4</td>
<td>104</td>
<td>20.4</td>
<td>144</td>
<td>10.9</td>
</tr>
<tr>
<td>25</td>
<td>43.0</td>
<td>65</td>
<td>33.0</td>
<td>105</td>
<td>20.1</td>
<td>145</td>
<td>10.7</td>
</tr>
<tr>
<td>26</td>
<td>42.8</td>
<td>66</td>
<td>32.7</td>
<td>106</td>
<td>19.8</td>
<td>146</td>
<td>10.6</td>
</tr>
<tr>
<td>27</td>
<td>42.7</td>
<td>67</td>
<td>32.4</td>
<td>107</td>
<td>19.5</td>
<td>147</td>
<td>10.5</td>
</tr>
<tr>
<td>28</td>
<td>42.5</td>
<td>68</td>
<td>32.1</td>
<td>108</td>
<td>19.2</td>
<td>148</td>
<td>10.3</td>
</tr>
<tr>
<td>29</td>
<td>42.3</td>
<td>69</td>
<td>31.8</td>
<td>109</td>
<td>18.9</td>
<td>149</td>
<td>10.2</td>
</tr>
<tr>
<td>30</td>
<td>42.1</td>
<td>70</td>
<td>31.4</td>
<td>110</td>
<td>18.6</td>
<td>150</td>
<td>10.0</td>
</tr>
<tr>
<td>31</td>
<td>41.9</td>
<td>71</td>
<td>31.1</td>
<td>111</td>
<td>18.3</td>
<td>151</td>
<td>9.91</td>
</tr>
<tr>
<td>32</td>
<td>41.8</td>
<td>72</td>
<td>30.8</td>
<td>112</td>
<td>18.0</td>
<td>152</td>
<td>9.78</td>
</tr>
<tr>
<td>33</td>
<td>41.6</td>
<td>73</td>
<td>30.5</td>
<td>113</td>
<td>17.7</td>
<td>153</td>
<td>9.65</td>
</tr>
<tr>
<td>34</td>
<td>41.4</td>
<td>74</td>
<td>30.2</td>
<td>114</td>
<td>17.4</td>
<td>154</td>
<td>9.53</td>
</tr>
<tr>
<td>35</td>
<td>41.1</td>
<td>75</td>
<td>29.8</td>
<td>115</td>
<td>17.1</td>
<td>155</td>
<td>9.40</td>
</tr>
<tr>
<td>36</td>
<td>40.9</td>
<td>76</td>
<td>29.5</td>
<td>116</td>
<td>16.8</td>
<td>156</td>
<td>9.28</td>
</tr>
<tr>
<td>37</td>
<td>40.7</td>
<td>77</td>
<td>29.2</td>
<td>117</td>
<td>16.5</td>
<td>157</td>
<td>9.17</td>
</tr>
<tr>
<td>38</td>
<td>40.5</td>
<td>78</td>
<td>28.8</td>
<td>118</td>
<td>16.2</td>
<td>158</td>
<td>9.05</td>
</tr>
<tr>
<td>39</td>
<td>40.3</td>
<td>79</td>
<td>28.5</td>
<td>119</td>
<td>16.0</td>
<td>159</td>
<td>8.94</td>
</tr>
<tr>
<td>40</td>
<td>40.0</td>
<td>80</td>
<td>28.2</td>
<td>120</td>
<td>15.7</td>
<td>160</td>
<td>8.82</td>
</tr>
</tbody>
</table>
Beam Design Flow Chart

1. **Collect data:** L, ω, γ, ∆_{lim}Δ_max ≤ ∆_{lim}?
 - This may be both the limit for live load deflection and total load deflection.

2. **ASD Allowable Stress Design?**
 - Collect data: F_y, F_u, and safety factors Ω
 - Find V_{max} & M_{max} from constructing diagrams or using beam chart formulas
 - Find Z_{req'd} and pick a section from a table with Z_x greater or equal to Z_{req'd}
 - Determine ω_{self wt} (last number in name) or calculate ω_{self wt}, using A found. Find M_{max-adj} & V_{max-adj}.
 - Is Z_{picked} ≥ Z_{req'd-adj}?
 - Yes: Calculate Δ_{max} (no load factors!) using superpositioning and beam chart equations with the I_{x} for the section
 - Is Δ_{max} ≤ ∆_{lim}?
 - Yes: (DONE)
 - No: pick a section with a larger I_{x}

3. **LRFD Design?**
 - Collect data: load factors, F_y, F_u, and equations for shear capacity with φ_v
 - Find V_u & M_u from constructing diagrams or using beam chart formulas with the factored loads
 - Pick a steel section from a chart having φ_b M_{n} ≥ M_{u} for the known unbraced length OR find Z_{req'd} and pick a section from a table with Z_x greater or equal to Z_{req'd}
 - Determine ω_{self wt} (last number in name) or calculate ω_{self wt}, using A found. Factor with γ_D. Find M_{u-max-adj} & V_{u-max-adj}.
 - Is M_u ≤ φ_b M_{n}?
 - Yes: Is V_u ≤ φ_v (0.6F_{yw}A_{w})?
 - Yes: pick a section with a larger web area
 - No: Calculate ∆_{max}
 - No: pick a new section with a larger web area