| Table of Reference Figures and Charts |  |
|--------------------------------------|  |
| Supports for Co-planar Structures .................................................. Note Set 2.1, p. 47 |
| Geometric Properties of Areas .......................................................... Note Set 2.1, p. 50 |
| Elastic Moduli of Selected Materials .................................................. Note Set 2.2, p. 65 |
| Coefficients of Thermal Expansion ................................................... Note Set 2.2, p. 68 |
| Theoretical and Recommended Effective Length Factors ................................ Note Set 2.2, p. 70 |
| Factors for Conversion of Units .......................................................... Note Set 2.3, p. 77 |
| Units of Measurement: SI System ......................................................... Note Set 2.3, p. 77 |
| Units of Measurement: U.S. System ........................................................ Note Set 2.3, p. 78 |
| IBC Example: Allowable Height and Building Areas .................................. Note Set 3.1, p. 81 |
| IBC Example: Fire-resistance Rating Requirements for Building Elements ........ Note Set 3.1, p. 82 |
| IBC Example: Fire-resistance Rating Requirements for Exterior Walls based on Fire Separation Distance ................................................................. Note Set 3.1, p. 82 |
| International Building Code Adoption Map ............................................. Note Set 3.1, p. 85 |
| Risk Category of Buildings and Other Structures for Flood, Wind, Snow, Earthquake, and Ice Loads ................................................................. Note Set 3.2, p. 88 |
| Building Material Weights ...................................................................... Note Set 3.3, pp. 93-94 |
| Minimum Uniformly Distributed Live Loads, $L_0$, and Minimum Concentrated Live Loads (from International Building Code) .................................................. Note Set 3.4, p. 95 |
| Live Load Element Factor, $K_{LL}$ ......................................................... Note Set 3.4, p. 96 |
| Ground Snow Loads, $p_s$, for the United States ....................................... Note Set 3.4, p. 98 |
| Deflection Limits ..................................................................................... Note Set 3.4, p. 100 |
| Beam Diagrams and Formulas (for various static loading conditions) .......... Note Set 4.1, pp. 109-110 |
| Live Load Element Factor, $K_{LL}$ ......................................................... Note Set 8.1, p. 185 |
| Reduction Multiplier (RM) for Live Load ................................................ Note Set 8.1, p. 186 |
| Moment and Shear Coefficients for Continuous Beams and One-Way Slabs ................................................................................................................. Note Set 8.1, p. 187 |
| Minimum Thickness for Two-Way Slab Systems ......................................... Note Set 8.1, p. 188 |
| Moment Coefficients for Two-Way Slab Systems ....................................... Note Set 8.1, pp. 191-192 |
| Openings Permitted in Slab Systems without Beams .................................. Note Set 8.3, p. 204 |
| Bending Moment (Coefficients) in Rectangular Plates ................................ Note Set 8.4, p. 205 |
ASTM Standard Reinforcing Bar Information ........................................ Note Set 10.1, p. 216
Maximum Reinforcement Ratio $\rho$................................................. Note Set 10.1, p. 218
Strength Curves ($R_n \text{ vs } \rho$) for singly reinforced rectangular sections . Note Set 10.1, p. 218
Minimum Thickness of Nonprestressed Beams or One-way Slabs unless Deflections are
  Computed (Table 7.3.1.1) ......................................................... Note Set 10.1, p. 220
ACI Provisions for Shear Design (Table 3-8) ..................................... Note Set 10.1, p. 222
Minimum Depth of Nonprestressed Beams ....................................... Note Set 10.1, p. 224
Alignment Chart for Effective Length of Columns in Continuous Frames
........................................................................................................... Note Set 10.1, p.
Factored Moment Resistance of Concrete Beams, $\phi M_n$ with $f'_c = 4$ ksi, $f_y = 60$ ksi
............................................................................................................. Note Set 10.1, p. 228
Column Interaction Diagrams ............................................................ Note Set 10.1, pp. 229-230
Beam / One-Way Slab Design Flow Chart ........................................ Note Set 10.1, pp. 231-232
Dimensions of Forms for One-Way Joist Construction .................... Note Set 10.3, p. 237
Dimensions of Forms for Two-Way Joist Construction ..................... Note Set 10.3, p. 238
Maximum Reinforcement Ratio $\rho$.................................................. Note Set 10.4, p. 241
Total Areas for Various Numbers of Reinforcing Bars...................... Note Set 10.4, p. 241
ASTM Standard Reinforcing Bars ..................................................... Note Set 10.4, p. 243
Strength Curves ($R_n \text{ vs } \rho$) for singly reinforced rectangular sections . Note Set 10.4, p. 242
Minimum Thickness of Solid Nonprestressed One-way Slabs .......... Note Set 11, p. 248
Strength Curves ($R_n \text{ vs } \rho$) for singly reinforced rectangular sections . Note Set 11, p. 250
Areas of Bars per Foot Width of Slab – $A_s$..................................... Note Set 11, p. 251
ACI Provisions for Shear Design (Table 3-8) ..................................... Note Set 11, p. 255
Minimum Thickness for Two-Way Slab Systems ............................ Note Set 11, p. 260
Maximum Permissible Calculated Deflections (Table 24.2.2 ACI-318) Note Set 11, p. 264
Material Properties of the Base Material of Fabrics ......................... Note Set 13.1, p. 266
Properties of Fabrics ........................................................................ Note Set 13.1, p. 268
Mechanical Properties of Common Fabrics .................................... Note Set 13.1, p. 270
Design Wind Pressures (Method 2) .................................................. Note Set 15.2, pp. 283-285
Risk Category of Buildings and Other Structures for Flood, Wind, Snow, Earthquake, and
  Ice Loads ...................................................................................... Note Set 15.2, p. 286
Basic Wind Speeds for Occupancy Category II Buildings and Other Structures
.................................................................................................................. Note Set 15.2, p. 287
Basic Gust Wind Speed (Residential) .......................................................... Note Set 15.3, p. 290
Classification of (Residential) Building Enclosure Conditions .......... Note Set 15.3, p. 290
Lateral Wind Loads for Application to Vertical Projected (Residential) Wall and Roof Area
.................................................................................................................. Note Set 15.3, p. 291
Wind Uplift Loads for Application to (Residential) Roof System Horizontal Projected Area
.................................................................................................................. Note Set 15.3, p. 291
Design Wind Pressure for (Residential) Components and Cladding .. Note Set 15.3, p. 292
Richter Magnitude ....................................................................................... Note Set 16.2, p. 309
Values of Site Coefficient Fa ................................................................. Note Set 16.4, p. 325
Values of Site Coefficient Fv ................................................................. Note Set 16.4, p. 326
Seismic Design Categories Based on Short Period (0.2 Second) Response Accelerations
.................................................................................................................. Note Set 16.4, p. 326
Seismic Design Categories Based on 1-Second) Response Acceleration Note Set 16.4, p. 326
Risk Targeted Maximum Considered Earthquake Ground Motion Response Accelerations of
0.2-Second Spectral Response Accelerations ........................................ Note Set 16.4, p. 327
Risk Targeted Maximum Considered Earthquake Ground Motion Response Accelerations of
1-Second Spectral Response Accelerations ............................................ Note Set 16.4, p. 328
Seismic - Structural System Characteristics ......................................... Note Set 16.4, pp. 329-330
Occupancy Category of Buildings and Other Structures ............... Note Set 16.6, p. 338
Importance Factor for Seismic Coefficient .......................................... Note Set 16.6, p. 338
Seismic Zone Factor ............................................................................... Note Set 16.6, p. 338
Seismic Response Modification Factor for Structural Systems ....... Note Set 16.6, p. 338
Timber Bearing Wall Resistance (R) ...................................................... Note Set 16.6, p. 340
Available Shear Strength of Bolts (Table 7-1)........................................ Note Set 17.1, p. 347
Available Shear Strength of Slip-Critical Connections (Table 7-3) ..... Note Set 17.1, p. 347
Available Bearing Strength at Bolt Holes Based on Bolt Spacing (Table 7-4)
.................................................................................................................. Note Set 17.1, p. 348
Available Bearing Strength at Bolt Holes Based on Edge Distance (Table 7.5)
.................................................................................................................. Note Set 17.1, p. 349
Minimum Size of Fillet Welds................................................................. Note Set 17.1, p. 351
Available Strength of Fillet Welds ......................................................... Note Set 17.1, p. 351
Load Duration Factor, $C_D$ ................................................................. Note Set 19.1, p. 366
Common Allowable Deflection Limits ............................................... Note Set 19.1, p. 368
Column Stability Factor, $C_p$ ............................................................. Note Set 19.1, p. 374
Section Property/Standard Sizes of Glued Laminated Timber .......... Note Set 19.1, p. 375
Section Properties of Southern Pine GLULAM ............................... Note Set 19.1, pp. 376-377
ASD Beam Design Flow Chart .......................................................... Note Set 19.1, p. 378
Equivalent Glulam Sections for Dimension Lumber/Timber Beams .. Note Set 19.2, p. 390
Equivalent Glulam Sections for Steel Beams ...................................... Note Set 19.2, p. 391
Equivalent Glulam Sections for Laminated Veneer Lumber (LVL) .. Note Set 19.2, p. 391
Equivalent Glulam Sections for Parallel Strand Lumber (PSL) ....... Note Set 19.2, p. 391
Roof Beams – Construction Loads (Douglas Fir-Larch Glulam)....... Note Set 20, p. 407
Safe Loads for Wood Columns ........................................................... Note Set 20, p. 408
Allowable Shear in Pounds per Foot for Horizontal Wood Structural Panel Diaphragms with Framing of Douglas-Fir Larch or Southern Pine .......... Note Set 20, p. 409
Allowable Shear for Wind or Seismic Forces in Pounds per Foot for Wood Structural Panel Shear Walls with Framing of DFL or Southern Pine ........... Note Set 20, p. 411
Common Allowable Deflection Limits .............................................. Note Set 21.1, p. 419
Listing of W Shapes in Descending order of $Z_x$ for Beam Design ... Note Set 21.1, pp. 431-432
Available Critical Stress, $\phi F_{cr}$, for Compression Members .......... Note Set 21.1, pp. 433-434
Beam Design Flow Chart for Steel ..................................................... Note Set 21.1, p. 435
Allowable Flexural Tensile Stresses for Clay and Concrete Masonry Note Set 23.1, p. 489
Balanced Section Properties for Rectangular Masonry Sections with Tension Reinforcement .......................................................... Note Set 23.1, p. 492
Section Properties for Concrete Masonry Walls ............................... Note Set 23.1, pp. 494-496
Presumptive Bearing Capacities from Indicated Building Codes ...... Note Set 24.1, p. 504