Concrete Construction

- cast-in-place
- tilt-up
- prestressing
- post-tensioning

Concrete Materials

- low strength to weight ratio
- relatively inexpensive
 - Portland cement
 - aggregate
 - water
Concrete Materials

• reinforcement
 – deformed bars
 – prestressing strand
 – stirrups
 – development length
 – anchorage
 – splices

• fire resistance
 – most fire-resistant structural material
 – low rate of penetration
 – retains strength if exposure not too long
 • stable to 900 – 1200 °F internally
 • loses 50% after that
 – no toxic fumes
 – cover necessary to protect steel

Concrete Beams

• types
 – reinforced
 – precast
 – prestressed

• shapes
 – rectangular, I
 – T, double T’s, bulb T’s
 – box
 – spandrel

• deformation
 – camber (elastic)
 • hogging
 • sagging
 – shrinkage strain
 • 200-400 x 10⁻⁶
 • about 2-3 years
 – creep strain
 • 2~3 times elastic strain
 • about 2-3 years
Concrete Beams

- **shear**
 - vertical
 - horizontal
 - combination:
 - tensile stresses at 45°

- **bearing**
 - crushing

Concrete Beam Design

- **composite of concrete and steel**
- **American Concrete Institute (ACI)**
 - design for failure
 - strength design (LRFD)
 - service loads x load factors
 - concrete holds no tension
 - failure criteria is yield of reinforcement
 - failure capacity x reduction factor
 - factored loads < reduced capacity
 - concrete strength = f'_c

Behavior of Composite Members

- **plane sections remain plane**
- stress distribution changes

Transformation of Material

- n is the ratio of E's
 \[n = \frac{E_2}{E_1} \]
 - effectively widens a material to get same stress distribution

\[
f_1 = E_1 \varepsilon = - \frac{E_1 y}{\rho} \quad f_2 = E_2 \varepsilon = - \frac{E_2 y}{\rho}
\]
Stresses in Composite Section

- with a section transformed to one material, new I
 - stresses in that material are determined as usual
 - stresses in the other material need to be adjusted by n

\[
\begin{align*}
 n &= \frac{E_2}{E_1} = \frac{E_{\text{steel}}}{E_{\text{concrete}}} \\
 f_c &= -\frac{M_y}{I_{\text{transformed}}} \\
 f_s &= -\frac{M_{yn}}{I_{\text{transformed}}}
\end{align*}
\]

Reinforced Concrete Analysis

- for stress calculations
 - steel is transformed to concrete
 - concrete is in compression above n.a. and represented by an equivalent stress block
 - concrete takes no tension
 - steel takes tension
 - force ductile failure

Location of n.a.

- ignore concrete below n.a.
- transform steel
- same area moments, solve for x

\[
\frac{bx}{2} - nA_s (d - x) = 0
\]
T sections

- n.a. equation is different if n.a. below flange

\[\frac{b_h h_f (x - h_f/2)}{2} + (x - h_f) b_w \left(\frac{x - h_f}{2} \right) - nA_s (d - x) = 0 \]

ACI Load Combinations*

- 1.4D
- 1.2D + 1.6L + 0.5(L_r or S or R)
- 1.2D + 1.6(L_r or S or R) + (1.0L or 0.5W)
- 1.2D + 1.0W + 1.0L + 0.5(L_r or S or R)
- 1.2D + 1.0E + 1.0L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E

*can also use old ACI factors

Reinforcement

- deformed steel bars (rebar)
 - Grade 40, \(F_y = 40 \) ksi
 - Grade 60, \(F_y = 60 \) ksi - most common
 - Grade 75, \(F_y = 75 \) ksi
 - US customary in # of 1/8” \(\phi \)
- longitudinally placed
 - bottom
 - top for compression reinforcement
 - spliced, hooked, terminated...

Reinforced Concrete Design

- stress distribution in bending

Reinforced Concrete Construction 17
Lecture 9
ARCH 631
F2007abn

Reinforced Concrete Construction 18
Lecture 10
Applied Architectural Structures
ARCH 631
F2012abn

ACI Load Combinations*

- 1.4D
- 1.2D + 1.6L + 0.5(L_r or S or R)
- 1.2D + 1.6(L_r or S or R) + (1.0L or 0.5W)
- 1.2D + 1.0W + 1.0L + 0.5(L_r or S or R)
- 1.2D + 1.0E + 1.0L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E

*can also use old ACI factors
Force Equations

- \(C = 0.85 f'_c ba \)
- \(T = A_s f_y \)
- where
 - \(f'_c \) = concrete compressive strength
 - \(a \) = height of stress block
 - \(b \) = width of stress block
 - \(f_y \) = steel yield strength
 - \(A_s \) = area of steel reinforcement

Equilibrium

- \(T = C \)
- \(M_n = T(d-a/2) \)
 - \(d \) = depth to the steel n.a.
- with \(A_s \)
 - \(a = \frac{A_s f_y}{0.85 f'_c b} \)
 - \(M_u \leq \phi M_n \) \(\phi = 0.9 \) for flexure
 - \(\phi M_n = \phi T(d-a/2) = \phi A_s f_y (d-a/2) \)

Over and Under-reinforcement

- over-reinforced
 - steel won't yield
- under-reinforced
 - steel will yield
- reinforcement ratio
 - \(\rho = \frac{A_s}{bd} \)
 - use as a design estimate to find \(A_s, b, d \)
 - max \(\rho \) is found with \(\varepsilon_{\text{steel}} \geq 0.004 \) (not \(\rho_{\text{bal}} \))

\[\rho = \frac{A_s}{bd} \]

\(\varepsilon_{\text{steel}} \geq 0.004 \) (not \(\rho_{\text{bal}} \))

\[\rho = \frac{A_s}{bd} \]

\(\varepsilon_{\text{steel}} \geq 0.004 \) (not \(\rho_{\text{bal}} \))

\[\rho = \frac{A_s}{bd} \]

\(\varepsilon_{\text{steel}} \geq 0.004 \) (not \(\rho_{\text{bal}} \))

\[\rho = \frac{A_s}{bd} \]

\(\varepsilon_{\text{steel}} \geq 0.004 \) (not \(\rho_{\text{bal}} \))
A_s For Given Section (cont)

- chart method
 - Wang & Salmon
 - Fig. 3.8.1 \(R_n \) vs. \(\rho \)
 1. calculate \(R_n = \frac{M_n}{bd^2} \)
 2. find curve for \(f'_c \) and \(f_y \) to get \(\rho \)
 3. calculate \(A_s \) and \(a \)
- simplify by setting \(h = 1.1d \)

Shear in Concrete Beams

- flexure combines with shear to form diagonal cracks

- horizontal reinforcement doesn’t help
- stirrups = vertical reinforcement

ACI Shear Values

- \(V_u \) is at distance \(d \) from face of support
- shear capacity: \(V_c = \nu_c \times b_w d \)
 - where \(b_w \) means thickness of web at n.a.
- shear stress (beams)
 - \(\nu_c = 2f'_c \)
 - \(\phi = 0.75 \) for shear
 - \(\phi V_c = \phi 2f'_c b_w d \)
 - \(f'_c \) is in psi
- shear strength: \(V_u \leq \phi V_c + \phi V_s \)
 - \(V_s \) is strength from stirrup reinforcement

Stirrup Reinforcement

- shear capacity:
 \[V_s = \frac{A_v f_y d}{s} \]
 - \(A_v \) = area in all legs of stirrups
 - \(s \) = spacing of stirrup
- may need stirrups when concrete has enough strength!
Required Stirrup Reinforcement

- spacing limits

<table>
<thead>
<tr>
<th>Table 3-8 ACI Provisions for Shear Design*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_c < \frac{f_y d}{2}$</td>
</tr>
<tr>
<td>Required area of stirrups, A_v'**</td>
</tr>
<tr>
<td>Required</td>
</tr>
<tr>
<td>Recommended Minimum†</td>
</tr>
<tr>
<td>Maximum‡ (ACI 11.5.4)</td>
</tr>
</tbody>
</table>

* Members subjected to shear and flexure only: $V_{c,0} = \frac{3}{8} f_y d_n$, $d_n = 0.75$ (ACI 11.3.6.1.1).
** $A_v = 2 \times A_v$ for U stirrups; $I_v \leq 60$ kip (ACI 11.5.2).
† A practical limit for minimum spacing is $d/4$.
‡ Maximum spacing based on minimum shear reinforcement ($= A_v'/50d_y$) must also be considered (ACI 11.5.5.3).

Concrete Deflections

- elastic range
 - I transformed
 - E_c (with f_c' in psi)
 - normal weight concrete (~145 lb/ft3)
 \[E_c = 57,000 \sqrt{f_c'} \]
 - concrete between 90 and 155 lb/ft3
 \[E_c = w_c^{1.5} 33 \sqrt{f_c'} \]
 - cracked
 - I cracked
 - E adjusted

Deflection Limits

- relate to whether or not beam supports or is attached to a damageable non-structural element
- need to check service live load and long term deflection against these

- L/180 | roof systems (typical) – live
- L/240 | floor systems (typical) – live + long term
- L/360 | supporting plaster – live
- L/480 | supporting masonry – live + long term

Prestressed Concrete

- impose a longitudinal force on a member in order to withstand more loading until the member reaches a tensile limit

- L/180 | roof systems (typical) – live
- L/240 | floor systems (typical) – live + long term
- L/360 | supporting plaster – live
- L/480 | supporting masonry – live + long term
Prestressed Concrete

- pretensioned
 - reinforcement bonded
- post-tensioned
 - bonded or unbonded
 - end bearing

- precast
 - concrete premade in a position other than its final position in the structure

Prestressed Concrete

- high strength tendons
 - grade 250
 - grade 270

Prestressed Concrete

- axial prestress ($e=0$)

\[f^t = \frac{P}{A} - \frac{M_{ct}}{I_g} \quad t - \text{top} \]
\[f_b = \frac{P}{A} + \frac{M_{ct}}{I_g} \quad b - \text{bottom} \]
\[c - \text{distance to fiber} \]
\[I_g - \text{gross cross section inertia} \]

Prestressed Concrete

- axial prestress ($e \neq 0$)

\[f^t = \frac{P}{A} + \frac{P e c_t}{I_g} - \frac{M_{ct}}{I_g} = -\frac{P}{A} \left(1 - \frac{e c_t}{r} \right) \frac{M_{ct}}{I_g} \]
\[f_b = -\frac{P}{A} \frac{M_{ct}}{I_g} + \frac{M_{ct}}{I_g} \quad r \text{ (remember: } r = \frac{I_g}{A} \)
Prestressed Concrete

Figure 4.2 Flexural stress distribution throughout loading history. (a) Beam section. (b) Initial prestressing stage. (c) Self-weight and effective prestress. (d) Full dead load plus effective prestress. (e) Full service load plus effective prestress. (f) Limit state of stress at ultimate load for underreinforced beam.

Composite Beams

- concrete
 - in compression
- steel
 - in tension
- shear studs

Continuous Beams

- reduced size
- reduced moments
- moments can reverse with loading patterns
- need top & bottom reinforcement
- sensitive to settlement
Approximate Depths

Concrete Columns

- columns require
 - ties or spiral reinforcement to “confine” concrete (#3 bars minimum)
 - minimum amount of longitudinal steel (#5 bars minimum: 4 with ties, 5 with spiral)

Concrete Columns

- effective length in monolithic casts must be found with respect to stiffness of joint
- not slender when
 \[\frac{kL_u}{r} < 22 \]
Concrete Columns

- P_o – no bending

 $$P_o = 0.85 f'_c (A_g - A_{st}) + f_y A_{st}$$

- $\phi_c = 0.65$ for ties with $P_n = 0.8P_o$
- $\phi_c = 0.70$ for spirals with $P_n = 0.85P_o$
- $P_u \leq \phi_c P_n$

nominal axial capacity:
- presumes steel yields
- concrete at ultimate stress

Columns with Bending

- eccentric loads can cause moments
- moments can change shape and induce more deflection

 $(P - \Delta)$

Columns with Bending

- for ultimate strength behavior, ultimate strains can’t be exceeded
 - concrete 0.003
 - steel $\frac{f_y}{E_s}$
- P reduces with M

Columns with Bending

- need to consider combined stresses

$$\frac{P_n}{P_o} + \frac{M_n}{M_o} \leq 1$$

- plot interaction diagram
Concrete Floor Systems

- types & spanning direction

Concrete Floor Systems

- flexure design as T-beams (+/- M)
- increase of 10% V_c permitted
- one-way and two-way moments
- slabs need steel
- effective width is
 - $L/4$
 - $b_w + 16t$
 - center-to-center of beams

![One-way Joists](image)

- standard stems
- 2.5" to 4.5" slab
- ~30" widths
- reusable forms

![FLANGEforms](image)
One-way Joists
- wide pans
- 5’, 6’ up
- light loads & long spans
- one-leg stirrups

WIDE FLANGEforms

One-way Joists
- wide pans
- 5’, 6’ up
- light loads & long spans
- one-leg stirrups

Reinforced Concrete Construction 53
Lecture 9

Two-way Joists
- domed pans
- 3’, 4’ & 5’

Reinforced Concrete Construction 54
Lecture 9

Construction Supervision

- proper placement of all reinforcement
 - welding
 - splices
- mix design
 - slump
 - in-situ strength
 - cast cylinders
 - cylinder cores – if needed

Reinforced Concrete Construction 55
Lecture 9

FIBERGLASSdomes

FIBERGLASSdomes are available in 15, 20 & 25 ton modules for various sized building structures - lighter weight and costs are available on a case-by-case basis at our facilities. Our full line is available from the shop or on-site. They are designed with a variety of weight/pressure loads enabling unique wind load structures. Both wide load and larger loads are available as well as a variety of weight/pressure loads enabling unique wind load structures. They are designed with a variety of weight/pressure loads enabling unique wind load structures.