reinforced concrete construction

Concrete Construction
- cast-in-place
- tilt-up
- prestressing
- post-tensioning

Concrete Materials
- low strength to weight ratio
- relatively inexpensive
 - Portland cement
 - aggregate
 - water
Concrete Materials

- reinforcement
 - deformed bars
 - prestressing strand
 - stirrups
 - development length
 - anchorage
 - splices

Concrete Materials

- fire resistance
 - most fire-resistant structural material
 - low rate of penetration
 - retains strength if exposure not too long
 - stable to 900 – 1200 °F internally
 - loses 50% after that
 - no toxic fumes
 - cover necessary to protect steel

Concrete Beams

- types
 - reinforced
 - precast
 - prestressed

Concrete Beams

- deformation
 - camber (elastic)
 - hogging ↑
 - sagging ↓
 - shrinkage strain
 - 200-400 x 10^-6
 - about 2-3 years
 - creep strain
 - 2~3 times elastic strain
 - about 2-3 years
Concrete Beams

- shear
 - vertical
 - horizontal
 - combination:
 - tensile stresses at 45°
- bearing
 - crushing

Concrete Beam Design

- composite of concrete and steel
- American Concrete Institute (ACI)
 - design for failure
 - strength design (LRFD)
 - service loads x load factors
 - concrete holds no tension
 - failure criteria is yield of reinforcement
 - failure capacity x reduction factor
 - factored loads < reduced capacity
 - concrete strength = f'_c

Behavior of Composite Members

- plane sections remain plane
- stress distribution changes

Transformation of Material

- n is the ratio of E's
 \[n = \frac{E_2}{E_1} \]
- effectively widens a material to get same stress distribution
Stresses in Composite Section

- with a section transformed to one material, new I
- stresses in that material are determined as usual
- stresses in the other material need to be adjusted by n

\[n = \frac{E_2}{E_1} = \frac{E_{\text{steel}}}{E_{\text{concrete}}} \]

\[f_c = -\frac{M_y}{I_{\text{transformed}}} \]

\[f_s = -\frac{M_y n}{I_{\text{transformed}}} \]

Reinforced Concrete Analysis

- for stress calculations
 - steel is transformed to concrete
 - concrete is in compression above n.a. and represented by an equivalent stress block
 - concrete takes no tension
 - steel takes tension
 - force ductile failure

Location of n.a.

- ignore concrete below n.a.
- transform steel
- same area moments, solve for x

\[bx \cdot \frac{x}{2} - nA_s (d - x) = 0 \]
T sections

- n.a. equation is different if n.a. below flange

\[b_f h_f \left(x - \frac{h_f}{2} \right) + b_w \left(x - h_f \right) \frac{x - h_f}{2} - nA_s (d - x) = 0 \]

ACI Load Combinations

- 1.4D
- 1.2D + 1.6L + 0.5(L_r or S or R)
- 1.2D + 1.6(L_r or S or R) + (1.0L or 0.5W)
- 1.2D + 1.0W + 1.0L + 0.5(L_r or S or R)
- 1.2D + 1.0E + 1.0L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E

*can also use old ACI factors

Reinforcement

- deformed steel bars (rebar)
 - Grade 40, \(F_y = 40 \text{ ksi} \)
 - Grade 60, \(F_y = 60 \text{ ksi} \) - most common
 - Grade 75, \(F_y = 75 \text{ ksi} \)
 - US customary in # of 1/8” \(\phi \)

- longitudinally placed
 - bottom
 - top for compression reinforcement
 - spliced, hooked, terminated...

Reinforced Concrete Design

- stress distribution in bending

Wang & Salmon, Chapter 3
Force Equations

- $C = 0.85 f'_c b a$
- $T = A_s f_y$

where
- f'_c = concrete compressive strength
- a = height of stress block
- β_1 = factor based on f'_c
- c = location to the n.a.
- b = width of stress block
- f_y = steel yield strength
- A_s = area of steel reinforcement

Equilibrium

- $T = C$
- $M_n = T(d-a/2)$
- d = depth to the steel n.a.
- ϕ = steel ratio
 - $\phi = 0.65 + (\epsilon_s - \epsilon_y) \frac{0.25}{(0.005 - \epsilon_y)} \geq 0.65$
 - $M_u \leq \phi M_n \quad \phi = 0.9$ for flexure*
 - $\phi M_n = \phi T(d-a/2) = \phi A_s f_y (d-a/2)$

Over and Under-reinforcement

- over-reinforced
 - steel won’t yield
- under-reinforced
 - steel will yield
- reinforcement ratio
 - $\rho = \frac{A_s}{bd}$
 - use as a design estimate to find A_s, b, d
 - max ρ is found with $\epsilon_{steel} \geq 0.004$ (not ρ_{bal})
 - *with $\epsilon_{steel} \geq 0.005$, $\phi = 0.9$

A_s for a given Section

- several methods
 - guess a and iterate
 1. guess a (less than n.a.)
 2. $A_s = \frac{0.85 f'_c b a}{f_y}$
 3. solve for a from $M_u = \phi A_s f_y (d-a/2)$
 4. repeat from 2. until a from 3. matches a in 2.
A_s For Given Section (cont)

- **chart method**
 - Wang & Salmon
 - Fig. 3.8.1 \(R_n \) vs. \(\rho \)
 1. calculate \(R_n = \frac{M_n}{bd^2} \)
 2. find curve for \(f_c' \) and \(f_y \) to get \(\rho \)
 3. calculate \(A_s \) and \(a \)
- simplify by setting \(h = 1.1d \)

ACI Shear Values

- \(V_u \) is at distance \(d \) from face of support
- shear capacity: \(V_c = \nu_c \times b_w d \)
 - where \(b_w \) means thickness of web at n.a.
- shear stress (beams)
 - \(\nu_c = 2 \lambda \sqrt{f_c'} \)
 - \(\phi = 0.75 \) for shear
 - \(\phi V_c = \phi 2 \lambda \sqrt{f_c'} b_w d \)
 - \(\lambda \) for lightweight materials
- shear strength: \(V_u \leq \phi V_c + \phi V_s \)
 - \(V_s \) is strength from stirrup reinforcement

Shear in Concrete Beams

- flexure combines with shear to form diagonal cracks
- horizontal reinforcement doesn’t help
- stirrups = vertical reinforcement

ACI Shear Values

- shear capacity:
 \[V_s = \frac{A_v f_y d}{s} \]
 - \(A_v \) = area in all legs of stirrups
 - \(s \) = spacing of stirrup
- may need stirrups when concrete has enough strength!
Required Stirrup Reinforcement

- spacing limits

<table>
<thead>
<tr>
<th>Table 3-8 ACI Provisions for Shear Design*</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{bc} vs V_{bc}^{*}</td>
</tr>
<tr>
<td>Required area of stirrups, A_{sh}**</td>
</tr>
<tr>
<td>greater of $0.5 b d$ and $0.75 f_{y} b d$</td>
</tr>
<tr>
<td>$V_{bc} > V_{bc}^{*}$</td>
</tr>
</tbody>
</table>

*Members subjected to shear and tension only, $V_{bc}' = 0.012 f_{y} b d$ (ACI 11.3.1.1)
**$A_{sh} = 2.6 A_{sh}$ for 1 stirrup, $1.5 A_{sh}$ (ACI 11.3.1.1)

Recommended Limit

- $V_{bc} = V_{bc}^{*}$

Maximum

- $V_{bc} < V_{bc}^{*}$

Deflection Limits

- relate to whether or not beam supports or is attached to a damageable non-structural element

- need to check service live load and long term deflection against these

L/180	roof systems (typical) – live
L/240	floor systems (typical) – live + long term
L/360	supporting plaster – live
L/480	supporting masonry – live + long term

Concrete Deflections

- elastic range
 - E_{c} (with f'_{c} in psi)
 - normal weight concrete (~ 145 lb/ft³)
 $E_{c} = 57,000 f'_{c}$
 - concrete between 90 and 155 lb/ft³
 $E_{c} = \sqrt[3]{0.75 f'_{c}}$

- cracked
 - I cracked
 - E adjusted

Prestressed Concrete

- impose a longitudinal force on a member in order to withstand more loading until the member reaches a tensile limit
Prestressed Concrete

- pretensioned
 - reinforcement bonded
- post-tensioned
 - bonded or unbonded
 - end bearing
- precast
 - concrete premade in a position other than its final position in the structure

Prestressed Concrete

- high strength tendons
 - grade 250
 - grade 270

Prestressed Concrete

- axial prestress \((e=0)\)

\[
f'_{t} = \frac{P}{A} - \frac{M_{c}}{I_{g}}
\]

\[
f'_{b} = \frac{P}{A} + \frac{M_{c}}{I_{g}}
\]

- axial prestress \((e\neq 0)\)

\[
f'_{t} = \frac{P}{A} + \frac{P_{ec}}{I_{g}} - \frac{M_{c}}{I_{g}} = \frac{P}{A} \left(1 - \frac{ec_{0}}{r}
ight) - \frac{M_{c}}{I_{g}}
\]

\[
f'_{b} = \frac{P}{A} + \frac{P_{ec}}{I_{g}} + \frac{M_{c}}{I_{g}} = \frac{P}{A} \left(1 + \frac{ec_{0}}{r}
ight) + \frac{M_{c}}{I_{g}}
\]

(remember \(r = \frac{T_{1}}{A}\))
Prestressed Concrete

- Self weight
- Design load
- Reinforced Concrete Construction 38 Lecture 9
- Architectural Structures III
- ARCH 631
- F2007abn

Composite Beams

- concrete
 - in compression
- steel
 - in tension
- shear studs

Continuous Beams

- reduced size
- reduced moments
- moments can reverse with loading patterns
- need top & bottom reinforcement
- sensitive to settlement
Approximate Depths

Concrete Columns

- columns require
 - ties or spiral reinforcement to “confine” concrete (#3 bars minimum)
 - minimum amount of longitudinal steel (4 bars minimum)

Concrete Columns

- effective length in monolithic casts must be found with respect to stiffness of joint
- not slender when
 \[\frac{kL}{r} < 22 \]

Concrete Columns

- not braced
Concrete Columns

- P_o – no bending
 \[P_o = 0.85 f'_c (A_g - A_{st}) + f_y A_{st} \]

- $\phi_c = 0.65$ for ties with $P_n = 0.8P_o$
- $\phi_c = 0.70$ for spirals
 with $P_n = 0.85P_o$
- $P_u \leq \phi_c P_n$
- nominal axial capacity:
 - presumes steel yields
 - concrete at ultimate stress

Columns with Bending

- eccentric loads can cause moments
- moments can change shape and induce more deflection ($P - \Delta$)

Columns with Bending

- for ultimate strength behavior, ultimate strains can’t be exceeded
 - concrete 0.003
 - steel $\frac{f_y}{E_s}$
- P reduces with M
Concrete Floor Systems

• types & spanning direction

Concrete Floor Systems

• flexure design as T-beams (+/- M)
• increase of 10% V_c permitted
• one-way and two-way moments
• slabs need steel
• effective width is
 – $L/4$
 – $b_w + 16t$
 – center-to-center of beams

One-way Joists

– standard stems
– 2.5” to 4.5” slab
– ~30” widths
– reusable forms
One-way

Joists
– wide pans
– 5’, 6’ up
– light loads & long spans
– one-leg stirrups

Two-way

Joists
– domed pans
– 3’, 4’ & 5’

Construction Supervision

• proper placement of all reinforcement
 – welding
 – splices

• mix design
 – slump
 – in-situ strength
 • cast cylinders
 • cylinder cores – if needed