Structural Design Sequences

- **first-order design**
 - structural type and organization
 - design intent
 - contextual or programmatic

- **second-order**
 - structural strategies
 - material choice
 - structural systems

- **third-order**
 - member shaping & sizing

Systems

- total of components
- behavior of whole
- classifications
 - one-way
 - two-way
 - tubes
 - braced
 - unbraced

Systems & Spans
Systems & Spans

Span Lengths
- crucial in selection of system
- maximum spans on charts aren't absolute limits, but usual maximums
- increase L, increase d^2 required (ex. cantilever)
- deflections depend on L

Moments in Members

Spans
- long-span structures
 - over 60’ or 20 m
 - depths are large compared to span
 - usually shaped
 - trusses, arches, cables, nets, pneumatics & shells
 - common for roofs
 - camber
 - flat systems not as efficient
 - deflections can govern size
Spans

- intermediate- and low-span systems
 - 15’ – 40’ or 5 – 15 m
 - more common
 - good for planar surfaces
 - lots of options
 - cost usually dictates

Moving Supports

- location of supports can redistributed the moments
 - reduced section size
- using cantilevers & continuous beams
 - rule of thumb for simple supported beam
 - move L/5 in both ends
 - move L/3 one end

Support Density

- concentrated structure
 - fewer columns
 - few large beams
- distributed structure
 - many columns
 - more smaller beams
- efficiency vs. character of interior space
- loads

Foundation Influence

- type may dictate density
 - piles vs. mats vs. spread
 - capacity of soil to sustain loads
 - high capacity – smaller area of bearing needing and can spread out
 - low capacity – multiple contacts and big distribution areas
One-Way Systems

- horizontal vs. vertical

Two-Way Systems

- spanning system less obvious
- horizontal
 - plates
 - slabs
 - space frames
- vertical
 - columns
 - walls

Square Bays

- two-way systems rely on square-ness
 - peripheral wall system or columns
 - columns extending 2 ways common
 - for low & intermediate span ranges
- one-way systems *can* be used
 - don’t have 4 walls
 - columns extending 1 way only
Rectangular Bays
• 1:1 to 1:1.5
• direction of joists & beams not obvious
 – run comparison for material amounts
• generally:
 – with no collectors, span the short way
 • lightweight joists or trusses
 – with collectors, try the short way
 • same tributary load over shorter span

Grids and Patterns
• often adopted early in design
 – give order
 – cellular, ex.
• vertical and horizontal
• square and rectangular
 – single-cell
 – aggregated bays

Grids and Patterns
• Grids and Patterns
 – often adopted early in design
 – give order
 – cellular, ex.
 – vertical and horizontal
 – square and rectangular
 – single-cell
 – aggregated bays

Grid Dependency on Floor Height
• wide grid = deep beams
 – increased building height
 – heavier
 – foundation design
• codes and zoning may limit
• utilize depth for mechanical

Grid Dependency on Floor Height
• wide grid = deep beams
 – increased building height
 – heavier
 – foundation design
• codes and zoning may limit
• utilize depth for mechanical
Non-Uniform Grids

- irregular column placement
 - concrete & flat slabs adaptable
- long spans
 - complex
 - increased story heights

Meeting of Grids

- common to use more than one grid
- intersection important structurally
- can use different structural materials
 - need to understand their properties
 - mechanical
 - thermal

Meeting of Grids

- horizontal choices

Corners

- terminate system & change
- transition, rotation, or two-way system
- depends on vertical elements
- prefer constant member sizes AND spacings with steel & wood
- can use cast-in-place concrete
Meeting of Grids

- vertical choices

![Grid diagrams](image)

Large Spaces

- ex. auditoriums, gyms, ballrooms
- choices
 - embed in finer grid
 - high up, less load transfer
 - low – more load transfer & heavy girders or deep truss
 - staggered truss

Case

- grid
- system orientation
 - one-way or two?
- span lengths
- support strategy
 - concentrated vs. distributed

Case

- Engineering Design & Research Center

![Case study image](image)
Case

- grid

Case

- system?

Case

- span lengths
 - 30-40 m (100 - 130 ft)
 - 15-20 m (50 – 65 ft)

Case

- pre-stressing & loading type
Design Issues

- **critical programmatic dimensions**
 - minimum clear spans for functional areas
 - determines selection of beam, or roof/ floor systems
 - vertical support elements
 - match clear span or greater

Spatial Implications

- **one-directional or linear space**
 - load bearing walls
 - beams & columns
 - column shape & orientation
 - long spans
- **two-way, relatively neutral space**
 - flat plate
 - beams & slabs
 - space frames
Roof Shapes

- coincide
- within

Other Conditions

- circulation
- building service systems
 - one-way systems have space for parallel runs
 - trusses allow for transverse penetration
 - pass beneath or interstitial floors
 - for complex or extensive services or flexibility

Other Conditions

- poking holes for member services
 - horizontal
 - need to consider area removed, where removed, and importance to shear or bending
 - vertical
 - requires framing at edges
 - can cluster openings to eliminate a bay
 - double systems

Fire Safety & Structures

- fire safety requirements can impact structural selection
- construction types
 - light
 - residential
 - wood-frame or unprotected metal
 - medium
 - masonry
 - heavy
 - protected steel or reinforced concrete

http://www.nfpa.org
Fire Safety & Structures

• degree of occupancy hazards
• building heights
• maximum floor areas between fire wall divisions
 – can impact load bearing wall location

Fire Safety & Structures

• resistance ratings by failure type
 – transmission failure
 • fire or gasses move
 – structural failure
 • high temperatures reduce strength
 • failure when subjected to water spray
 • necessary strength

• ratings do not pertain to usefulness of structure after a fire