Applied Architectural Structures: Structural Analysis and Systems

ARCH 631

Dr. Anne Nichols

Fall 2015

Lecture Fourteen

Structural Design Sequences

- **first-order design**
 - structural type and organization
 - design intent
 - contextual or programmatic

- **second-order**
 - structural strategies
 - material choice
 - structural systems

- **third-order**
 - member shaping & sizing

Systems

- total of components
- behavior of whole
- classifications
 - one-way
 - two-way
 - tubes
 - braced
 - unbraced

Systems & Spans

Total of components

Behavior of whole

Classifications

- one-way
- two-way
- tubes
- braced
- unbraced

Structural Components

Timber
- Bolts
- L-shaped beams
- Box beams

Concrete
- Slabs
- Beams
- Panel pistes
- Precast planks
- Precast columns
- Precast cores

Steel
- decking
- Web stiffeners
- Plate girders

Folded plates

Timber
- Plywood
- Panel-in-place

Concrete
- Panel-in-place

Caesar Beegle
Systems & Spans

- **Span Lengths**
 - crucial in selection of system
 - maximum spans on charts aren’t absolute limits, but usual maximums
 - increase L, increase \(d^2 \) required (ex. cantilever)
 - deflections depend on L

\[
f_{b_{\text{max}}} = \frac{WL}{bd^2/6}
\]

Moments in Members

Spans

- long-span structures
 - over 60’ or 20 m
 - depths are large compared to span
 - usually shaped
 - trusses, arches, cables, nets, pneumatics & shells
 - common for roofs
 - camber
 - flat systems not as efficient
 - deflections can govern size
Spans

- **intermediate-** and low-span systems
 - 15’ – 40’ or 5 – 15 m
 - more common
 - good for planar surfaces
 - lots of options
 - cost usually dictates

Moving Supports

- location of supports can redistributed the moments
 - reduced section size
- using cantilevers & continuous beams
 - rule of thumb for simple supported beams
 - move L/5 in both ends
 - move L/3 one end

Support Density

- concentrated structure
 - fewer columns
 - few large beams
- distributed structure
 - many columns
 - more smaller beams
- efficiency vs. character of interior space
- loads

Foundation Influence

- type may dictate density
 - piles vs. mats vs. spread
 - capacity of soil to sustain loads
 - high capacity – smaller area of bearing needing and can spread out
 - low capacity – multiple contacts and big distribution areas
One-Way Systems

- horizontal vs. vertical

Two-Way Systems

- spanning system less obvious
- horizontal
 - plates
 - slabs
 - space frames
- vertical
 - columns
 - walls

Square Bays

- two-way systems rely on square-ness
 - peripheral wall system or columns
 - columns extending 2 ways common
 - for low & intermediate span ranges
- one-way systems can be used
 - don’t have 4 walls
 - columns extending 1 way only
Rectangular Bays

- 1:1 to 1:1.5
- direction of joists & beams not obvious
 - run comparison for material amounts
- generally:
 - with no collectors, span the short way
 - lightweight joists or trusses
 - with collectors, try the short way
 - same tributary load over shorter span

Grids and Patterns

- often adopted early in design
 - give order
 - cellular, ex.
- vertical and horizontal
- square and rectangular
 - single-cell
 - aggregated bays

Grids and Patterns

- Grid Dependency on Floor Height
 - wide grid = deep beams
 - increased building height
 - heavier
 - foundation design
 - codes and zoning may limit
 - utilize depth for mechanical
Non-Uniform Grids

- irregular column placement
 - concrete & flat slabs adaptable
- long spans
 - complex
 - increased story heights

Meeting of Grids

- common to use more than one grid
- intersection important structurally
- can use different structural materials
 - need to understand their properties
 - mechanical
 - thermal

Meeting of Grids

- horizontal choices

Corners

- terminate system & change
- transition, rotation, or two-way system
- depends on vertical elements
- prefer constant member sizes AND spacings with steel & wood
- can use cast-in-place concrete
Meeting of Grids

- vertical choices

![Diagram of meeting grids]

Large Spaces

- ex. auditoriums, gyms, ballrooms

 - choices
 - embed in finer grid
 - high up, less load transfer
 - low – more load transfer & heavy girders or deep truss
 - staggered truss

![Diagram of large spaces]

Case

- grid
 - system orientation
 - one-way or two?

- span lengths

- support strategy
 - concentrated vs. distributed

![Image of a building grid]

Case

- Engineering Design & Research Center

![Image of Engineering Design & Research Center]
Case

- grid

Case

- system?

Case

- span lengths
 - 30-40 m (100 - 130 ft)
 - 15-20 m (50 – 65 ft)

Case

- pre-stressing & loading type
Design Issues

- **critical programmatic dimensions**
 - minimum clear spans for functional areas
 - determines selection of beam, or roof/ floor systems
 - vertical support elements
 - match clear span or greater

- **degree of fit**
 - single (1:1)
 - multiple (2:1, etc.)
 - any number of patterns possible
 - simple patterns generally more “elegant”

- **one-on-one fit**
 - good for large spans
 - material selection influences short span fit
 - steel & concrete for “looser” fits

Spatial Implications

- **one-directional or linear space**
 - load bearing walls
 - beams & columns
 - column shape & orientation
 - long spans

- **two-way, relatively neutral space**
 - flat plate
 - beams & slabs
 - space frames
Roof Shapes
• coincide
• within

Other Conditions
• circulation
• building service systems
 – one-way systems have space for parallel runs
 – trusses allow for transverse penetration
 – pass beneath or interstitial floors
 • for complex or extensive services or flexibility

Other Conditions
• poking holes for member services
 – horizontal
 • need to consider area removed, where removed, and importance to shear or bending
 – vertical
 • requires framing at edges
 • can cluster openings to eliminate a bay
 – double systems

Fire Safety & Structures
• fire safety requirements can impact structural selection
• construction types
 – light
 • residential
 • wood-frame or unprotected metal
 – medium
 • masonry
 – heavy
 • protected steel or reinforced concrete
Fire Safety & Structures

• degree of occupancy hazards
• building heights
• maximum floor areas between fire wall divisions
 – can impact load bearing wall location

Fire Safety & Structures

• resistance ratings by failure type
 – transmission failure
 • fire or gasses move
 – structural failure
 • high temperatures reduce strength
 – failure when subjected to water spray
 • necessary strength
• ratings do not pertain to usefulness of structure after a fire