Lateral Load Resistance

- stability important for any height
- basic mechanisms
 - shear walls
 - diaphragms
 - diagonal bracing
 - frame action
- resist any direction laterally without excessive movement

Load Direction

- layout

Figure 1.14 Earthquake loads on a structure.
Rectangular Buildings

- short side (in red)
 - needs to resist most wind
 - bigger surface area
 - shear walls common
- long side
 - other mechanisms
- long & low
 - may only need end bracing
- symmetry important
 – avoid distortions, ex. twisting

Shear Walls

- resist lateral load in plane with wall

Shear Walls

- lateral resistance

- masonry
- concrete
Shear Walls

- timber
 - wall studs with sheathing
 - vertical trusses

Shear Walls

- steel

Shear Walls

- insulated concrete forms (ICF)

Diaphragms

- roof and floor framing and decks
- relative stiffness
- necessary in pin connected beam-column frames with no horizontal resisting elements
Diaphragms
• connections critical
• drag struts

Braced Frames
• pin connections
• bracing to prevent lateral movements

Braced Frames
• types of bracing
 – knee-bracing
 – diagonal
 – X (cross)
 – K, V or chevron
 – shear walls

Rigid Framing and Bracing
Rigid Framing and Bracing

Frame Action

- choice influenced by ease of rigid joint construction by system
 - concrete
 - steel
 - timber braces
- bending moments mean larger members

Shear Walls & Diagonal Bracing

- use with pin connected members
 - steel common
 - concrete rare
- solid shear walls
 - concrete
 - masonry
- wide spaced shear walls or diagonal bracing requires floor diaphragms
 - timber, steel or composite

Member Orientation

- strong axis
 - biggest I in a non-doubly-symmetric section
 - resists bending better
- frame action & narrow dimension buildings
 - deep direction parallel to long is typical
 - very narrow parallel to short
Member Characteristics

• long span members preclude frame action

![Diagram of long-span member precluding frame action](image1)

• shear walls can be combined with bearing walls
 – use determines orientation

![Diagram of shear walls combined with bearing walls](image2)

Building Height and Resistance

• low-medium rise
 – easier to accommodate
 – ex. residential
 • shear walls
 • diagonal bracing
 • floor diaphragms (panels)

![Building height and resistance](image3)

• high rise
 – shear walls & bracing hinder functions
 – frames useful or with shear walls

![High-rise building example](image4)

Multistory Buildings

• strength design
 – frame action efficient up to ~ 10 stories
 – steel systems
 – reinforced concrete
 • flat plate & columns
 – lower lateral capacity
 – edge moments can’t be resisted
 – end walls offer shear resistance
 • flat slab
 • one-way
 • two-way
 – higher resistance
 – elevator cores

![Multistory building example](image5)

Multistory Buildings

• overturning, rigidity

![Diagram of overturning and rigidity](image6)

(c) Frame and core are connected with outrigger trusses for additional stiffness.

(f) Diagrid: Gravity and lateral forces are transferred through a triangulated column grid.
Strength Design

- moments like cantilever beam
- tube action – bigger I
- elements
 - rigid at exterior resist lateral loads
 - interior can only carry gravity loads
- “stiffen” narrow shaped plans with shape

Deflection and Motion Control

- serviceability issues
 - vibration
 - deflection
 - displacement
- mechanisms
 - stiffness
 - tuned mass dampers
- rule of thumb:
 - limit static wind load deflections to h/500

Wind Design

- codes
 - based upon minimum wind speed with 90% probability of 50 yr non-exceedance
- loads
 - pressure
 - drag
 - rocking
 - harmonic
 - uplift
 - torsion

Wind Design Loads

- exposure
 - non-linear
 - equivalent static pressure based on wind speed

\[F_w = C_d q_h A = pA \]
Flood Design

• know your risk
 – zone A
 • 100 year flood, no data available
 – zone AE
 • 100 year flood, detailed analysis
 – zone E
 • outside 100 year flood, minimal depths

Flood Design

• loads
 – hydrostatic pressure
 • up, down, lateral
 – impact velocities
 • scour
 – impact from debris

• design
 – elevation, proper site
 – shear walls with caution
 – concrete recommended