Lateral Load Resistance

- stability important for any height
- basic mechanisms
 - shear walls
 - diaphragms
 - diagonal bracing
 - frame action
- resist any direction laterally without excessive movement

Load Direction

- layout

Lateral Load Design 1
Lecture 15
Applied Architectural Structures
ARCH 631
F2012abn

Lateral Load Design 2
Lecture 14
Architectural Structures III
ARCH 631
F2007abn

Lateral Load Design 3
Lecture 14
Architectural Structures III
ARCH 631
F2007abn

Lateral Load Design 4
Lecture 14
Architectural Structures III
ARCH 631
F2007abn
Rectangular Buildings

- short side (in red)
 - needs to resist most wind
 - bigger surface area
 - shear walls common

- long side
 - other mechanisms

- long & low
 - may only need end bracing

- symmetry important
 - avoid distortions, ex. twisting

Shear Walls

- resist lateral load in plane with wall

Shear Walls

- lateral resistance

- masonry
- concrete

http://nisee.berkeley.edu/godden
Shear Walls

• timber
 – wall studs with sheathing
 – vertical trusses

Shear Walls

• steel

Shear Walls

• insulated concrete forms (ICF)

Diaphragms

– roof and floor framing and decks
– relative stiffness
– necessary in pin connected beam-column frames with no horizontal resisting elements
Diaphragms

- connections critical
- drag struts

Braced Frames

- pin connections
- bracing to prevent lateral movements

Braced Frames

- types of bracing
 - knee-bracing
 - diagonal
 - X (cross)
 - K, V or chevron
 - shear walls

Rigid Framing and Bracing

- (a) Pinned frame with diagonal bracing
- (b) Typical rigid frame structure
- (c) Pinned frames with diagonal bracing
- (d) Series of stable S-shaped arches
- (e) Frame made up of trusses rigidly connected to columns
- (f) House with diagonal bracing
Rigid Framing and Bracing

Frame Action
- choice influenced by ease of rigid joint construction by system
 - concrete
 - steel
 - timber braces
- bending moments mean larger members

Shear Walls & Diagonal Bracing
- use with pin connected members
 - steel common
 - concrete rare
- solid shear walls
 - concrete
 - masonry
- wide spaced shear walls or diagonal bracing requires floor diaphragms
 - timber, steel or composite

Member Orientation
- strong axis
 - biggest I in a non-doubly-symmetric section
 - resists bending better
- frame action & narrow dimension buildings
 - deep direction parallel to long is typical
 - very narrow parallel to short
Member Characteristics

- long span members preclude frame action

- shear walls can be combined with bearing walls
 - use determines orientation

Building Height and Resistance

- low-medium rise
 - easier to accommodate
 - ex. residential
 - shear walls
 - diagonal bracing
 - floor diaphragms (panels)

- high rise
 - shear walls & bracing hinder functions
 - frames useful or with shear walls

Multistory Buildings

- strength design
 - frame action efficient up to ~ 10 stories
 - steel systems
 - reinforced concrete
 - flat plate & columns
 - lower lateral capacity
 - edge moments can’t be resisted
 - end walls offer shear resistance
 - flat slab
 - one-way
 - two-way
 - higher resistance
 - elevator cores

Overturning, rigidity

- Frame and core are connected with outrigger trusses for additional stiffness.
- Diagonal. Gravity and lateral forces are transferred through a triangulated column grid.
Strength Design

- moments like cantilever beam
- tube action – bigger I
- elements
 - rigid at exterior resist lateral loads
 - interior can only carry gravity loads
- “stiffen” narrow shaped plans with shape

Deflection and Motion Control

- serviceability issues
 - vibration
 - deflection
 - displacement
- mechanisms
 - stiffness
 - tuned mass dampers
- rule of thumb:
 - limit static wind load deflections to $h/500$

Wind Design

- codes
 - based upon minimum wind speed with 90% probability of 50 yr non-exceedance
- loads
 - pressure
 - drag
 - rocking
 - harmonic
 - uplift
 - torsion

Wind Design Loads

- exposure
 - non-linear
 - equivalent static pressure based on wind speed

$$F_W = C_d q_h A = pA$$
Flood Design

- **know your risk**
 - **zone A**
 - 100 year flood, no data available
 - **zone AE**
 - 100 year flood, detailed analysis
 - **zone E**
 - outside 100 year flood, minimal depths

Flood Design

- **loads**
 - hydrostatic pressure
 - up, down, lateral
 - impact velocities
 - scour
 - impact from debris

- **design**
 - elevation, proper site
 - shear walls with caution
 - concrete recommended