Connections

Connection Design Considerations

- joints often critical in design
 - can influence choice of structural system
- types used influenced by:
 - member behavior
 - member geometry
- basic types join by:
 - lapping
 - deforming and interlocking
 - butting

Connectors

- “third-elements”
 - bolts
 - nails
 - welds
 - splice plates
- transfer load at a point, line or surface
 - generally more than a point due to stresses

Connector Rigidity

- pinned joints
 - point type
- rigid joints
 - line and surface types
 - multiple “points” separated by distance resist moment

\[T = C \quad M = Td = Cd \]
Point Connectors

- connected members in tension cause shear stress

 ![Diagram of a bolted connection with shear stress](image)

- connected members in compression cause bearing stress

 ![Diagram of a bolted connection with bearing stress](image)

Single Shear

- seen when 2 members are connected

 \[
 f_v = \frac{P}{A} = \frac{P}{\pi \frac{d^2}{4}}
 \]

 ![Diagram of a bolted connection with shear stress](image)

Double Shear

- seen when 3 members are connected

 \[
 \Sigma F = 0 = -P + 2\left(\frac{P}{2}\right)
 \]

 ![Diagram of a bolted connection in double shear](image)

Bearing Stress

- compression & contact

 \[
 f_p = \frac{P}{A_{projected}} = \frac{P}{td}
 \]

 ![Diagram of a bolted connection with bearing stress](image)
Beam Stresses

- shear – horizontal & vertical

Connectors Resisting Beam Shear

- plates with
 - nails
 - rivets
 - bolts

- splices

- V from beam load related to $V_{\text{longitudinal}}$

$$\frac{V_{\text{longitudinal}}}{p} = \frac{VQ}{I}$$

$$nF_{\text{connector}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p$$

Vertical Connectors

- isolate an area with vertical interfaces

$$nF_{\text{connector}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p$$
Tension Members

- members with holes have reduced area
- increased tension stress
- A_e is effective net area

$$f_t = \frac{P}{A_e} \left(\text{or} \frac{T}{A_e} \right)$$

Effective Net Area

- likely path to “rip” across
- bolts divide transferred force too

Wood Connectors

- adhesives
 - used in a controlled environment
 - can be used with nails
- mechanical
 - nails
 - bolts
 - lag bolts or lag screws
 - split ring and shear plate connectors
 - timber rivets

Wood Connections

- mechanical
Nails

- tension stress (pullout)
- shear stress
- nails presumed to share load by distance from centroid of nail pattern

Bolts

- bearing stress
 - parallel to grain
 - perpendicular to grain
- shear stress
- tension stress in member
- concerned with end shear rupture

Lag Screws

- tension stress (pullout)
 - avoid parallel to grain
- shear stress

Split Ring Connectors

- bearing stress
 - parallel to grain
 - perpendicular to grain
- shear stress
- tension stress in member
- concerned with end shear rupture
- (like bolts)
Plate Connections

- rigid
 - bolts or nails
 - plate
 - continuous at top & bottom

- shear
 - metal plate with teeth

Miscellaneous Connectors

- beam hangers
- frame anchors
- seats
- etc...

Steel Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns

- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

Bolts

- bolted steel connections
Welds

- welded steel connections

Bolts

- types
 - materials
 - high strength
 - location of threads
 - included
 - excluded
 - friction or bearing
 - always tightened

Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double
 - member
 - rupture

Bolted Connection Design

- Unified steel
 - shear:
 \[
 R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi_v R_n \\
 \Omega = 2.00 \quad \phi_v = 0.75
 \]
 - bolt strengths
 - bolt types
 - A325-SC, A490-SC
 - A325-N, A490-N
 - A325-X, A490-X

Table T-1: Available Shear Strength of Bolts, kips

- Various bolt strengths and types are listed in the table, indicating their shear and bearing capacities.
Bolted Connection Design

• Unified steel
 – bearing:
 • bolts rarely fail by bearing
 • other part fails first
 – slip critical
 • tightened down
 – holes are 1/16” larger
 – effective hole widths are 1/8” more

Bolted Connection Design

• single shear or tension
 \[R_u \leq \phi R_n \]
 \[R_n = F_n A_b \]
 \[\phi = 0.75 \]
• double shear
 \[R_n = F_n 2A_b \]
• bolt area
 – threads excluded
 – threads included

Tension Members

• \(A_e = A_n U \)
 – \(A_n \) is actual net area
 – \(U \) is shear lag factor by element type

\[A_n = A_g - A_{of \ all \ holes} + t \Sigma \frac{S}{4g} \]
Tension Members

- limit states for failure: \(R_u \leq \phi R_n \)
 1. yielding: \(\phi = 0.9 \quad R_n = F_y A_g \)
 2. rupture*: \(\phi = 0.75 \quad R_n = F_u A_e \)

\(A_g \) - gross area
\(A_e \) - effective net area
\(F_u \) = the tensile strength of the steel (ultimate)

Welded Connection Design

- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat

- weld materials
 - E60XX
 - E70XX
 \(F_{EXX} = 70 \text{ ksi} \)

Welded Connection Design

- shear failure assumed
- throat
 - \(T = 0.707 \times \text{weld size} \)
- area
 - \(A = T \times \text{length of weld} \)
- weld metal generally stronger than base metal (ex. \(F_y = 50 \text{ ksi} \))
Welded Connection Design

- **minimum**
 - table
- **maximum**
 - material thickness (to ¼”)
 - 1/16” less
- **min. length**
 - 4 x size min.
 - ≥ 1 ½”

Welded Connection Design

- shear

\[
R_a \leq \frac{R_n}{\Omega} \quad R_s \leq \phi R_n \\
\phi = 0.75
\]

\[
R_n = 0.6F_t \frac{EXX}{Tl} = Sl
\]

- table for \(\phi S\)

Framed Beam Connections

- **angles**
 - bolted
 - welded

Framed Beam Connections

- **terms**
 - coping
Framed Beam Connections
• tables for standard bolt holes & spacings
• $n =$ # bolts
• bolt diameter, angle leg thickness
• bearing on beam web

Other Beam Connections
• seated beam
 – unstiffened
 – stiffened
• continuous
 – beam to column
 – beam to beam

Other Connections
• rigid frame knees
• beam splice
• column splice

Beam Connections
• LRFD provisions
 – shear yielding
 – shear rupture
 – block shear rupture
 – tension yielding
 – tension rupture
 – local web buckling
 – lateral torsional buckling
Beam Connections

• LRFD design of connected elements
 – shear yielding \(\phi = 1.00 \quad R_n = 0.60 F_y A_g \)
 – shear rupture \(\phi = 0.75 \quad R_n = 0.60 F_u A_{nv} \)
 – block shear rupture \(\phi = 0.75 \)
 \[R_n = 0.60 F_u A_{nv} + U_{bs} F_u A_{nt} \leq 0.6 F_y A_{gv} + U_{bs} F_u A_{nt} \]
 where \(U_{bs} \) is 1 for uniform tensile stress

• block shear rupture • tension rupture

Beam Connections

– tension yielding \(\phi = 0.90 \quad R_n = F_y A_g \)
– tension rupture \(\phi = 0.75 \quad R_n = F_u A_e \)
– flexural yielding \(\phi_b = 0.90 \quad M_n = F_y Z_{(net)} \)
– local web buckling
– lateral torsional buckling

Beam Bearing

• design considerations
 – web crippling
 – base plate bending
 – bearing on concrete, etc.
• load distributed

Figure 5.10 Considerations for bearing in beams with thin webs, as related to web crippling (buckling of the thin web in compression).
Column Base Plates

- **attached by anchor bolts**
 - usually 4
 - 2 if no moment

- **plate level**
 - by shims & grout
 - leveling nuts

- **considers**
 - bearing on steel
 - bending of plate