Timber Construction

- all-wood framing systems
 - studs, beams, floor diaphragms, shearwalls
 - glulam arches & frames
 - post & beams
 - trusses

- composite construction
 - masonry shear walls
 - concrete
 - steel

Timber Construction

- glulam arches & frames
 - manufactured or custom shapes
 - glue laminated
 - bigger members
Timber Construction

- **post & beam**

- **trusses**

Timber Construction by Code

- **light-frame**
 - light loads
 - 2x’s
 - floor joists – 2x6, 2x8, 2x10, 2x12 typical at spacings of 12”, 16”, 24”
 - normal spans of 20-25 ft or 6-7.5 m
 - plywood spans between joists
 - stud or load-bearing masonry walls
 - limited to around 3 stories –fire safety

Timber Construction

- **composite construction**

Timber Construction by Code

- **heavy timber**
 - member size rated for fire resistance
 - solid or built-up sections
 - beams spaced 4’, 6’ or 8’ apart or 1, 2 or 2.5 m
 - normal spans of 10-20 ft or 3-6 m
 - timber columns or load-bearing masonry walls
 - knee-bracing common
Timber

- lightweight: strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by “flaws”
- size varies by tree growth
- manufactured wood
 - assembles pieces
 - adhesives

Wood Properties

- cell structure and density

Wood Properties

- moisture
 - exchanges with air easily
 - excessive drying causes warping and shrinkage
 - strength varies some

Wood Properties

- load duration
 - short duration
 - higher loads
 - normal duration
 - > 10 years

Wood Properties

- creep
 - additional deformation with no additional load
Wood Properties

- strength
 - allowable design loads are given with respect to direction of loading
 - wood is weakest in shear parallel to the grain
 - wood is strongest in compression and tension parallel to grain

Lumber Grading

- light-framing
 - construction visual
 - standard mechanical
 - utility
 - economy

- structural light-framing
 - select structural
 - no. 1, 2, & 3

Engineered Wood

- plywood
 - veneers at different orientations
 - glued together
 - split resistant
 - higher and uniform strength
 - limited shrinkage and swelling
 - used for sheathing, shear walls, diaphragms

Engineered Wood

- glued-laminated timber
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms
Engineered Wood

- I sections
 - beams
- other products
 - pressed veneer strip panels (Parallam)
- wood fibers
 - Hardieboard: cement & wood

Timber Elements

- stressed-skin elements
 - modular built-up “plates”
 - typically used for floors or roofs

Timber Elements

- built-up box sections
 - built-up beams
 - usually site-fabricated
 - bigger spans

Timber Elements

- trusses
 - long spans
 - versatile
 - common in roofs
Timber Elements

- folded plates and arch panels
 - usually of plywood

Timber Elements

- arches and lamellas
 - arches commonly laminated timber
 - long spans
 - usually only for roofs

Approximate Depths

- beams
 - joists
 - girders
 - lateral bracing

- deflection
 - elastic
 - creep
Wood Design

- National Design Specification
 - National Forest Products Association
 - ASD & LRFD (combined 2005)
 - adjustment factors x tabulated stress = allowable stress
 - adjustment factors terms, C with subscript
 - i.e, bending:

\[f_b \leq F'_b = F_b \times (\text{product of adjustment factors}) \]

Adjustment Factors

- terms
 - \(C_D \): load duration factor
 - \(C_M \): wet service factor
 - 1.0 dry \(\leq \) 16% MC
 - \(C_F \): size factor
 - visually graded sawn lumber and round timber > 12” depth

\[C_F = \left(\frac{12}{d} \right)^{1/6} \leq 1.0 \]

Allowable Stresses

- design values
 - \(F_b \): bending stress
 - \(F_t \): tensile stress
 - \(F_v \): horizontal shear stress
 - \(F_{cl} \): compression stress (perpendicular to grain)
 - \(F_c \): compression stress (parallel to grain)
 - \(E \): modulus of elasticity
 - \(F_p \): bearing stress (parallel to grain)

Adjustment Factors

- terms
 - \(C_{fu} \): flat use factor
 - not decking
 - \(C_i \): incising factor
 - increase depth for pressure treatment
 - \(C_t \): temperature factor
 - lose strength at high temperatures
Adjustment Factors

- **terms**
 - $C_r = \text{repetitive member factor}$
 - 1.15 for more than 3 joists, < 24" o.c., or connected by load-distributing element
 - $C_H = \text{shear stress factor}$
 - splitting
 - $C_v = \text{volume factor for glulam}$
 - replaces C_F for timber
 - $C_L = \text{beam stability factor}$
 - beams without full lateral support

Load Combinations

- **design loads, take the bigger of**
 - $(\text{dead loads})/0.9$
 - $(\text{dead loads} + \text{any possible combination of live loads})/C_D$

- **deflection limits**
 - no load factors
 - for stiffer members:
 - $\Delta_T\text{ max from } LL + 0.5(DL)$
 - for instantaneous deflection

Deflection Limits

- **relies on Uniform Building Code specs**

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
</tbody>
</table>

Wood Beam Design - Glulam

- **find M**
- **determine allowable stress**
 - Pinus Radiata (man.) basic working stress (MPa)

<table>
<thead>
<tr>
<th>Moisture content</th>
<th>Bonding parallel F_b</th>
<th>Compression parallel F_c</th>
<th>Tension parallel F_t</th>
<th>Shear in beam F_s</th>
<th>Compression perpendicular F_p</th>
<th>Modular elasticity E (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16%</td>
<td>13.0</td>
<td>12.5</td>
<td>6.3</td>
<td>1.9</td>
<td>4.3</td>
<td>12.0</td>
</tr>
<tr>
<td>16%</td>
<td>12.1</td>
<td>11.7</td>
<td>7.3</td>
<td>1.8</td>
<td>4.0</td>
<td>11.0</td>
</tr>
<tr>
<td>16%</td>
<td>10.6</td>
<td>10.9</td>
<td>6.4</td>
<td>1.8</td>
<td>4.0</td>
<td>9.0</td>
</tr>
<tr>
<td>16%</td>
<td>8.2</td>
<td>10.0</td>
<td>4.9</td>
<td>1.8</td>
<td>4.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>
Wood Beam Design - Glulam

- calculate S_{required}
- choose width and height so that $bh^2/6 > S_{\text{req'd}}$
- evaluate V, Δ, T
- consider bracing, connections

Technical Information

<table>
<thead>
<tr>
<th>Standard Sizes of Straight Glulam Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Width (mm)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Nominal Dimension</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>125</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>400</td>
</tr>
</tbody>
</table>

Wood Columns

- slenderness ratio $= L/d_{\text{min}} = L/d_1$
 - $d_1 = \text{smaller dimension}$
 - $\ell/e \leq 50$ (max)

$$f_c = \frac{P}{A} \leq F'_c$$

- where F'_c is the allowable compressive strength parallel to the grain

Allowable Wood Stress

$$F'_c = F_c \left(C_D \right) \left(C_M \right) \left(C_t \right) \left(C_F \right) \left(C_p \right)$$

- where:
 - $F_c = \text{compressive strength parallel to grain}$
 - $C_D = \text{load duration factor}$
 - $C_M = \text{wet service factor (1.0 dry)}$
 - $C_t = \text{temperature factor}$
 - $C_F = \text{size factor}$
 - $C_p = \text{column stability factor}$

Strength Factors

- wood properties and load duration, C_D
 - short duration
 - higher loads
 - normal duration
 - > 10 years

- stability, C_p
 - combination curve - tables

$$F'_c = F_c C_p = (F_c C_D) C_p$$
C_p Charts

Procedure

1. obtain F'_{c}
 - find l_e/d or assume $(l_e/d \leq 50)$
 - compute $F_c' = \frac{K_{cE}E}{(l_e/d)^2}$
 - $K_{cE} = 0.3$ sawn
 - $K_{cE} = 0.418$ glu-lam
 - compute $F_c^* \approx F_c C_D$
 - find $F_c/E/F_c^*$ and get C_p

 $F_c' = F_c^* C_p$

2. select a section
 - if P & A known, set stress at limit
 - solve for l_e, L, or d_{min}
 - if P & l_e known, find A, or d_{min}

3. continue from 2 until F_c satisfied

Eccentric Loading Stress Limit

- in reality, as the column flexes, the moment increases

- $P-\Delta$ effect
Column with Bending Design
- **interaction equation**

\[
\left(\frac{f_c}{F'_c}\right)^2 + \frac{f_{bx}}{F'_{bx}} \left(1 - \frac{f_c}{F_{cEx}}\right) \leq 1.0
\]

\(f_c\) term – magnification factor for P-\(\Delta\)

\(F'_{bx}\) – allowable bending strength

Structural Supervision
- **review changes in shop drawings!**
- **inspection of construction**
 - verify compliance with plans
- **some materials require more**
 - variability of materials
 - sampling and testing

Construction Requirements - Wood
- **if not treated**
 - height above exposed ground
 - 18” joists, 12” girders
 - in masonry or concrete
 - provide ½” air space
- **foundation sills must be treated**
- **structural members**
 - must be protected from exposure to weather and water

- **crawl space ventilation**
- **fire stops**
 - walls
 - at ceiling and floor and every 10’ along
 - interconnections
 - soffits and dropped ceilings
 - concealed spaces
 - access for passage of fire
 - stairways & between floors and roof