Wood Construction

Wood Construction 1
Lecture 19
Applied Architectural Structures
ARCH 631
DR. ANNE NICHOLS
FALL 2013

Timber Construction

• studs, beams
• floor diaphragms & shear walls

Wood Construction 2
Lecture 18
Architectural Structures III
ARCH 631

Timber Construction

• all-wood framing systems
 – studs, beams, floor diaphragms, shearwalls
 – glulam arches & frames
 – post & beams
 – trusses
• composite construction
 – masonry shear walls
 – concrete
 – steel

Wood Construction 3
Lecture 18
Architectural Structures III
ARCH 631

Timber Construction

• glulam arches & frames
 – manufactured or custom shapes
 – glue laminated
 – bigger members

Wood Construction 4
Lecture 18
Architectural Structures III
ARCH 631
Timber Construction

• post & beam

• trusses

Timber Construction by Code

• light-frame
 – light loads
 – 2x’s
 – floor joists – 2x6, 2x8, 2x10, 2x12 typical at spacings of 12”, 16”, 24”
 – normal spans of 20-25 ft or 6-7.5 m
 – plywood spans between joists
 – stud or load-bearing masonry walls
 – limited to around 3 stories – fire safety

Timber Construction

• composite construction

Timber Construction by Code

• heavy timber
 – member size rated for fire resistance
 – solid or built-up sections
 – beams spaced 4’, 6’ or 8’ apart or 1, 2 or 2.5 m
 – normal spans of 10-20 ft or 3-6 m
 – timber columns or load-bearing masonry walls
 – knee-bracing common
Timber

- lightweight: strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by “flaws”
- size varies by tree growth
- manufactured wood
 - assembles pieces
 - adhesives

Wood Properties

- cell structure and density

Wood Properties

- moisture
 - exchanges with air easily
 - excessive drying causes warping and shrinkage
 - strength varies some
- temperature
 - steam
 - volatile products
 - combustion

Wood Properties

- load duration
 - short duration
 - higher loads
 - normal duration
 - > 10 years
- creep
 - additional deformation with no additional load
Wood Properties

• strength
 – allowable design loads are given with respect to direction of loading
 – wood is weakest in shear parallel to the grain
 – wood is strongest in compression and tension parallel to grain

Lumber Grading

• light-framing
 – construction visual
 – standard mechanical
 – utility mechanical
 – economy mechanical

• structural light-framing
 – select structural
 – no. 1, 2, & 3

Engineered Wood

• plywood
 – veneers at different orientations
 – glued together
 – split resistant
 – higher and uniform strength
 – limited shrinkage and swelling
 – used for sheathing, shear walls, diaphragms

Engineered Wood

• glued-laminated timber
 – glulam
 – short pieces glued together
 – straight or curved
 – grain direction parallel
 – higher strength
 – more expensive than sawn timber
 – large members (up to 100 feet!)
 – flexible forms
Engineered Wood

- I sections
 - beams
- other products
 - pressed veneer strip panels (Parallam)
- wood fibers
 - Hardieboard: cement & wood

Timber Elements

- stressed-skin elements
 - modular built-up “plates”
 - typically used for floors or roofs

Timber Elements

- built-up box sections
 - built-up beams
 - usually site-fabricated
 - bigger spans

Timber Elements

- trusses
 - long spans
 - versatile
 - common in roofs
Timber Elements

• folded plates and arch panels
 – usually of plywood

Timber Elements

• arches and lamellas
 – arches commonly laminated timber
 – long spans
 – usually only for roofs

Approximate Depths

Timber Elements

• beams
 – joists
 – girders
 – lateral bracing

• deflection
 • elastic
 • creep
Wood Design

- **National Design Specification**
 - National Forest Products Association
 - ASD & LRFD (combined 2005)
 - adjustment factors x tabulated stress = allowable stress
 - adjustment factors terms, C with subscript
 - i.e, bending:
 \[f_b \leq F'_b = F_b \times \left(\text{product of adjustment factors} \right) \]

Allowable Stresses

- **design values**
 - \(F_b \): bending stress
 - \(F_t \): tensile stress
 - \(F_v \): horizontal shear stress
 - \(F_c \): compression stress (perpendicular to grain)
 - \(F_{cL} \): compression stress (parallel to grain)
 - \(E \): modulus of elasticity
 - \(F_p \): bearing stress (parallel to grain)

Adjustment Factors

- **terms**
 - \(C_D \): load duration factor
 - \(C_M \): wet service factor
 - 1.0 dry \(\leq \) 16% MC
 - \(C_F \): size factor
 - visually graded sawn lumber and round timber > 12” depth
 \[C_F = \left(\frac{12}{d} \right)^{0.6} \leq 1.0 \]
 - \(C_F \): size factor
 - visually graded sawn lumber and round timber > 12” depth
 \[C_F = \left(\frac{12}{d} \right)^{0.6} \leq 1.0 \]
 - \(C_{fu} \): flat use factor
 - not decking
 - \(C_i \): incising factor
 - increase depth for pressure treatment
 - \(C_t \): temperature factor
 - lose strength at high temperatures
Adjustment Factors

- **terms**
 - C_r = repetitive member factor
 - 1.15 for more than 3 joists, < 24" o.c., or connected by load-distributing element
 - C_H = shear stress factor
 - splitting
 - C_v = volume factor for glulam
 - replaces C_F for timber
 - C_L = beam stability factor
 - beams without full lateral support

Load Combinations

- **design loads, take the bigger of**
 - (dead loads)/0.9
 - (dead loads + any possible combination of live loads)/C_D

- **deflection limits**
 - no load factors
 - for stiffer members:
 - Δ_T max from $LL + 0.5(DL)$
 - for instantaneous deflection

Deflection Limits

- relies on Uniform Building Code specs

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
</tbody>
</table>

Wood Beam Design - Glulam

- find M
- determine allowable stress
 - Pinus Radiata (man.) basic working stress (MPa)

<table>
<thead>
<tr>
<th>Timberbeam Glulam</th>
<th>Moisture content</th>
<th>Bending parallel Fb</th>
<th>Compression parallel Fc</th>
<th>Tension parallel Fc</th>
<th>Shear in Beam Fb</th>
<th>Compression perpendicular Fp</th>
<th>Modulus of elasticity E(GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E11</td>
<td>16%</td>
<td>12.8</td>
<td>12.5</td>
<td>8.3</td>
<td>1.9</td>
<td>4.3</td>
<td>12.0</td>
</tr>
<tr>
<td>Engineering</td>
<td>16%</td>
<td>12.1</td>
<td>11.7</td>
<td>7.3</td>
<td>1.8</td>
<td>4.0</td>
<td>11.0</td>
</tr>
<tr>
<td>No.1 Framing</td>
<td>16%</td>
<td>10.6</td>
<td>10.9</td>
<td>6.4</td>
<td>1.8</td>
<td>4.0</td>
<td>9.0</td>
</tr>
<tr>
<td>No.2 Framing</td>
<td>16%</td>
<td>8.2</td>
<td>10.0</td>
<td>4.9</td>
<td>1.8</td>
<td>4.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>
Wood Beam Design - Glulam

- calculate S_{required}
- choose width and height so that $bh^2/6 > S_{\text{req'd}}$
- evaluate V, Δ, T
- consider bracing, connections

Technical Information

STANDARD SIZES OF STRAIGHT GLULAM MEMBERS

<table>
<thead>
<tr>
<th>Beam Width (mm)</th>
<th>Beam Depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Diameter</td>
<td>Premium Finish</td>
</tr>
<tr>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>65</td>
<td>30</td>
</tr>
<tr>
<td>85</td>
<td>30</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>125</td>
<td>30</td>
</tr>
<tr>
<td>150</td>
<td>30</td>
</tr>
<tr>
<td>175</td>
<td>30</td>
</tr>
<tr>
<td>200</td>
<td>30</td>
</tr>
<tr>
<td>225</td>
<td>30</td>
</tr>
<tr>
<td>250</td>
<td>30</td>
</tr>
<tr>
<td>275</td>
<td>30</td>
</tr>
<tr>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td>325</td>
<td>30</td>
</tr>
<tr>
<td>350</td>
<td>30</td>
</tr>
</tbody>
</table>

Allowable Wood Stress

$F_c' = F_c (C_D) (C_M) (C_t) (C_F) (C_p)$

- where:
 - $F_c = \text{compressive strength parallel to grain}$
 - $C_D = \text{load duration factor}$
 - $C_M = \text{wet service factor (1.0 dry)}$
 - $C_t = \text{temperature factor}$
 - $C_F = \text{size factor}$
 - $C_p = \text{column stability factor}$

Wood Columns

- slenderness ratio $= L/d_{\text{min}} = L/d_1$
 - $d_1 = \text{smaller dimension}$
 - $l_e/d \leq 50$ (max)

 $$f_c = \frac{P}{A} \leq F_c'$$

 - where F_c' is the allowable compressive strength parallel to the grain

Strength Factors

- wood properties and load duration, C_D
 - short duration
 - higher loads
 - normal duration
 - > 10 years

- stability, C_p
 - combination curve - tables

 $$F_c' = F_c^* C_p = \left(F_c C_D \right) C_p$$
Procedure

1. obtain F'_c
 - find l_e/d or assume ($l_e/d \leq 50$)
 - compute $F_{cE} = \frac{K_{cE} E}{(l_e/d)^2}$
 - $K_{cE} = 0.3$ sawn
 - $K_{cE} = 0.418$ glu-lam
 - compute $F_{cE}' \approx F_c C_D$
 - find F_{cE}/F_{cE}' and get C_p

 $F'_c = F^{*} C_p$

Procedure

2. select a section
 - if P & A known, set stress at limit
 • solve for l_e, L, or d_{min}
 - if P & l_e known,
 • find A, or d_{min}

3. continue from 2 until F_c satisfied

Eccentric Loading Stress Limit

- in reality, as the column flexes, the moment increases

- $P-\Delta$ effect

\[
\frac{f_a}{F_a} + \frac{f_b \times (Magnification \ factor)}{F_{bx}} \leq 1.0
\]
Column with Bending Design

- interaction equation

\[
\frac{f_c}{F_c'} + \frac{f_{bx}}{F_{bx}^{cEx}} \leq 1.0
\]

() term – magnification factor for P-\(\Delta\)

\(F_{bx}^{cEx}\) – allowable bending strength

Structural Supervision

- review changes in shop drawings!
- inspection of construction
 - verify compliance with plans
- some materials require more
 - variability of materials
 - sampling and testing

Construction Requirements - Wood

- if not treated
 - height above exposed ground
 - 18” joists, 12” girders
 - in masonry or concrete
 - provide ½” air space
- foundation sills must be treated
- structural members
 - must be protected from exposure to weather and water

Construction Requirements - Wood

- crawl space ventilation
- fire stops
 - walls
 - at ceiling and floor and every 10’ along
 - interconnections
 - soffits and dropped ceilings
 - concealed spaces
 - access for passage of fire
 - stairways & between floors and roof