Timber Construction

- studs, beams
- floor diaphragms & shear walls

Timber Construction

- all-wood framing systems
 - studs, beams, floor diaphragms, shearwalls
 - glulam arches & frames
 - post & beams
 - trusses
- composite construction
 - masonry shear walls
 - concrete
 - steel

Timber Construction

- glulam arches & frames
 - manufactured or custom shapes
 - glue laminated
 - bigger members
Timber Construction

- **post & beam**

- **trusses**

Timber Construction by Code

- **light-frame**
 - **light loads**
 - **2x’s**
 - floor joists – 2x6, 2x8, 2x10, 2x12 typical at spacings of 12”, 16”, 24”
 - normal spans of 20-25 ft or 6-7.5 m
 - plywood spans between joists
 - stud or load-bearing masonry walls
 - limited to around 3 stories – fire safety

Timber Construction

- **composite construction**

Timber Construction by Code

- **heavy timber**
 - member size rated for fire resistance
 - solid or built-up sections
 - beams spaced 4’, 6’ or 8’ apart or 1, 2 or 2.5 m
 - normal spans of 10-20 ft or 3-6 m
 - timber columns or load-bearing masonry walls
 - knee-bracing common
Timber

• lightweight: strength ~ like steel
• strengths vary
 – by wood type
 – by direction
 – by “flaws”
• size varies by tree growth
• manufactured wood
 – assembles pieces
 – adhesives

Wood Properties

• cell structure and density

Wood Properties

• load duration
 – short duration
 • higher loads
 – normal duration
 • > 10 years
• creep
 – additional deformation with no additional load

Wood Properties

• moisture
 – exchanges with air easily
 – excessive drying causes warping and shrinkage
 – strength varies some
• temperature
 – steam
 – volatile products
 – combustion
Wood Properties

- **strength**
 - allowable design loads are given with respect to direction of loading
 - wood is weakest in shear parallel to the grain
 - wood is strongest in compression and tension parallel to grain

Lumber Grading

- **light-framing**
 - construction
 - standard
 - utility
 - economy
- **structural light-framing**
 - select structural
 - no. 1, 2, & 3

Engineered Wood

- **plywood**
 - veneers at different orientations
 - glued together
 - split resistant
 - higher and uniform strength
 - limited shrinkage and swelling
 - used for sheathing, shear walls, diaphragms

- **glued-laminated timber**
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms
Engineered Wood

- **I sections**
 - beams
- **other products**
 - pressed veneer strip panels (Parallam)
 - laminated veneered lumber (LVL)
- **wood fibers**
 - Hardieboard: cement & wood

Timber Elements

- **stressed-skin elements**
 - modular built-up “plates”
 - typically used for floors or roofs

Timber Elements

- **built-up box sections**
 - built-up beams
 - usually site-fabricated
 - bigger spans

Timber Elements

- **trusses**
 - long spans
 - versatile
 - common in roofs
Timber Elements

• folded plates and arch panels
 – usually of plywood

Timber Elements

• arches and lamellas
 – arches commonly laminated timber
 – long spans
 – usually only for roofs

Timber Elements

• beams
 – joists
 – girders

 – lateral bracing

 – deflection
 • elastic
 • creep

Approximate Depths

![Approximate Depths Chart](image-url)
Wood Design

- National Design Specification
 - National Forest Products Association
 - ASD & LRFD (combined 2005)
 - adjustment factors x tabulated stress = allowable stress
 - adjustment factors terms, C with subscript
 - i.e, bending:

\[f_b \leq F'_b = F_b \times \text{(product of adjustment factors)} \]

Allowable Stresses

- design values
 - \(F_b \): bending stress
 - \(F_t \): tensile stress
 - \(F_v \): horizontal shear stress
 - \(F_{cL} \): compression stress (perpendicular to grain)
 - \(F_c \): compression stress (parallel to grain)
 - \(E \): modulus of elasticity
 - \(F_p \): bearing stress (parallel to grain)
Adjustment Factors

• terms
 – \(C_D \) = load duration factor
 – \(C_M \) = wet service factor
 • 1.0 dry \(\leq 16\% \) MC
 – \(C_F \) = size factor
 • visually graded sawn lumber and round timber > 12” depth

\[C_F = \left(\frac{12}{d} \right)^{1/6} \leq 1.0 \]

Adjustment Factors

• terms
 – \(C_{fu} \) = flat use factor
 • not decking
 – \(C_i \) = incising factor
 • increase depth for pressure treatment
 – \(C_t \) = temperature factor
 • lose strength at high temperatures

Load Combinations

• design loads, take the bigger of
 – (dead loads)/0.9
 – (dead loads + any possible combination of live loads)/\(C_D \)

• deflection limits
 – no load factors
 – for stiffer members:
 • \(\Delta_T \) max from \(LL + 0.5(DL) \)
 • for instantaneous deflection
Deflection Limits

- relies on Uniform Building Code specs

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
</tbody>
</table>

Wood Beam Design - Glulam

- find M
- determine allowable stress
 - Pinus Radiata (man.) basic working stress (MPa)

<table>
<thead>
<tr>
<th>Timberboard Glulam</th>
<th>Moisture content</th>
<th>Bending parallel P Fs</th>
<th>Compression parallel P Fs</th>
<th>Tension parallel P Fs</th>
<th>Shear in beam P Fs</th>
<th>Compression perpendicular P Fs</th>
<th>Modular elasticity E (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E11</td>
<td>16%</td>
<td>13.8</td>
<td>12.5</td>
<td>8.3</td>
<td>1.9</td>
<td>4.3</td>
<td>12.0</td>
</tr>
<tr>
<td>Engineering</td>
<td>16%</td>
<td>12.1</td>
<td>11.7</td>
<td>7.3</td>
<td>1.8</td>
<td>4.0</td>
<td>11.0</td>
</tr>
<tr>
<td>No.1 Framing</td>
<td>16%</td>
<td>10.6</td>
<td>10.0</td>
<td>6.4</td>
<td>1.8</td>
<td>4.0</td>
<td>9.0</td>
</tr>
<tr>
<td>No.2 Framing</td>
<td>16%</td>
<td>8.2</td>
<td>10.0</td>
<td>4.9</td>
<td>1.8</td>
<td>4.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Wood Beam Design - Glulam

- calculate S_{required}
- choose width and height so that $bh^2/6 > S_{\text{req'd}}$
- evaluate V, Δ, T
- consider bracing, connections

Technical Information

<table>
<thead>
<tr>
<th>STANDARD SIZES OF STRAIGHT GLULAM MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Width (mm)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>125</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>350</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>450</td>
</tr>
</tbody>
</table>

Wood Columns

- slenderness ratio = $L/d_{\text{min}} = L/d_1$
 - $d_1 = \text{smaller dimension}$
 - $l_e/d \leq 50$ (max)

$$f_c = \frac{P}{A} \leq F'_c$$

- where F'_c is the allowable compressive strength parallel to the grain
Allowable Wood Stress

\[F'_c = F_c \left(C_D \right) \left(C_M \right) \left(C_t \right) \left(C_F \right) \left(C_p \right) \]

- where:
 - \(F_c = \) compressive strength parallel to grain
 - \(C_D = \) load duration factor
 - \(C_M = \) wet service factor \((1.0 \text{ dry})\)
 - \(C_t = \) temperature factor
 - \(C_F = \) size factor
 - \(C_p = \) column stability factor

Strength Factors

- wood properties and load duration, \(C_D \)
 - short duration
 - higher loads
 - normal duration
 - \(> 10 \) years
 - stability, \(C_p \)
 - combination curve - tables
 \[F'_c = F_c^* C_p = \left(F_c C_D \right) C_p \]

C\(_p\) Charts

<table>
<thead>
<tr>
<th>(\frac{I_e}{d})</th>
<th>Sawed</th>
<th>Glu-Lam</th>
<th>(\frac{I_e}{d})</th>
<th>Sawed</th>
<th>Glu-Lam</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.40</td>
<td>0.360</td>
<td>0.377</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.40</td>
<td>0.367</td>
<td>0.396</td>
</tr>
<tr>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.40</td>
<td>0.377</td>
<td>0.406</td>
</tr>
<tr>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.40</td>
<td>0.383</td>
<td>0.403</td>
</tr>
<tr>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.44</td>
<td>0.398</td>
<td>0.403</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.45</td>
<td>0.398</td>
<td>0.420</td>
</tr>
<tr>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.45</td>
<td>0.405</td>
<td>0.426</td>
</tr>
<tr>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.47</td>
<td>0.412</td>
<td>0.426</td>
</tr>
<tr>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.48</td>
<td>0.419</td>
<td>0.444</td>
</tr>
<tr>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.49</td>
<td>0.427</td>
<td>0.455</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.50</td>
<td>0.434</td>
<td>0.461</td>
</tr>
<tr>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.51</td>
<td>0.441</td>
<td>0.469</td>
</tr>
<tr>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.52</td>
<td>0.448</td>
<td>0.477</td>
</tr>
<tr>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.53</td>
<td>0.454</td>
<td>0.484</td>
</tr>
<tr>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.54</td>
<td>0.461</td>
<td>0.492</td>
</tr>
<tr>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.55</td>
<td>0.468</td>
<td>0.500</td>
</tr>
<tr>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.56</td>
<td>0.474</td>
<td>0.506</td>
</tr>
<tr>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.57</td>
<td>0.481</td>
<td>0.515</td>
</tr>
<tr>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.58</td>
<td>0.487</td>
<td>0.523</td>
</tr>
<tr>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.59</td>
<td>0.494</td>
<td>0.530</td>
</tr>
</tbody>
</table>

Procedure

1. obtain \(F'_c \)
 - find \(\frac{l_e}{d} \) or assume \(\frac{l_e}{d} \leq 50 \)
 - compute \(F_{cE} = K_{cE} E \left(\frac{l_e}{d} \right)^2 \)
 - \(K_{cE} = 0.3 \) sawn
 - \(K_{cE} = 0.418 \) glu-lam
 - compute \(F_{c*} \approx F_c C_D \)
 - find \(F_{cE}/F_{c*} \) and get \(C_p \)
 \[F'_c = F_{c*} C_p \]
Procedure
2. select a section
 – if P & A known, set stress at limit
 • solve for l_e, L, or d_{min}
 – if P & l_e known,
 • find A, or d_{min}
3. continue from 2 until F'_c satisfied

Eccentric Loading Stress Limit
– in reality, as the column flexes, the moment increases
– $P-\Delta$ effect

\[
\frac{f_a}{F_a} + \frac{f_h \times (\text{Magnification factor})}{F_{bx}} \leq 1.0
\]

Column with Bending Design
• interaction equation

\[
\left(\frac{f_c}{F'_c}\right)^2 + \frac{f_{bx}}{F'_{bx}} \left[\frac{1 - f_c}{F_{cEx}}\right] \leq 1.0
\]

() term – magnification factor for $P-\Delta$
F'_{bx} – allowable bending strength

Structural Supervision
• review changes in shop drawings!
• inspection of construction
 – verify compliance with plans
• some materials require more
 – variability of materials
 – sampling and testing
Construction Requirements - Wood

• if not treated
 – height above exposed ground
 • 18” joists, 12” girders
 – in masonry or concrete
 • provide ½” air space
• foundation sills must be treated
• structural members
 – must be protected from exposure to weather and water

Construction Requirements - Wood

• crawl space ventilation
• fire stops
 – walls
 • at ceiling and floor and every 10’ along
 – interconnections
 • soffits and dropped ceilings
 – concealed spaces
 • access for passage of fire
 • stairways & between floors and roof