Timber Construction

- all-wood framing systems
 - studs, beams, floor diaphragms, shearwalls
 - glulam arches & frames
 - post & beams
 - trusses

- composite construction
 - masonry shear walls
 - concrete
 - steel

Wood Construction 1
Lecture 19
Applied Architectural Structures
ARCH 631
F2008abn

Wood Construction 2
Lecture 18
Architectural Structures III
ARCH 631
F2007abn

Wood Construction 3
Lecture 18
Architectural Structures III
ARCH 631
F2007abn

Wood Construction 4
Lecture 18
Architectural Structures III
ARCH 631
F2007abn
Timber Construction

- post & beam

- trusses

Timber Construction by Code

- light-frame
 - light loads
 - 2x’s
 - floor joists – 2x6, 2x8, 2x10, 2x12 typical at spacings of 12”, 16”, 24”
 - normal spans of 20-25 ft or 6-7.5 m
 - plywood spans between joists
 - stud or load-bearing masonry walls
 - limited to around 3 stories – fire safety

Timber Construction

- composite construction

Timber Construction by Code

- heavy timber
 - member size rated for fire resistance
 - solid or built-up sections
 - beams spaced 4’, 6’ or 8’ apart or 1, 2 or 2.5 m
 - normal spans of 10-20 ft or 3-6 m
 - timber columns or load-bearing masonry walls
 - knee-bracing common
Timber
- lightweight: strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by “flaws”
- size varies by tree growth
- manufactured wood
 - assembles pieces
 - adhesives

Wood Properties
- cell structure and density

Wood Properties
- moisture
 - exchanges with air easily
 - excessive drying causes warping and shrinkage
 - strength varies some
- temperature
 - steam
 - volatile products
 - combustion

Wood Properties
- load duration
 - short duration
 - higher loads
 - normal duration
 - > 10 years
- creep
 - additional deformation with no additional load
Wood Properties

- strength
 - allowable design loads are given with respect to direction of loading
 - wood is weakest in shear parallel to the grain
 - wood is strongest in compression and tension parallel to grain

Lumber Grading

- light-framing
 - construction visual
 - standard mechanical
 - utility
 - economy
 - structural light-framing
 - select structural
 - no. 1, 2, & 3

Engineered Wood

- plywood
 - veneers at different orientations
 - glued together
 - split resistant
 - higher and uniform strength
 - limited shrinkage and swelling
 - used for sheathing, shear walls, diaphragms

Engineered Wood

- glued-laminated timber
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms
Engineered Wood

- **I sections**
 - beams
- **other products**
 - pressed veneer strip panels (Parallam)
 - laminated veneered lumber (LVL)
- **wood fibers**
 - Hardieboard: cement & wood

Timber Elements

- **stressed-skin elements**
 - modular built-up “plates”
 - typically used for floors or roofs

Timber Elements

- **built-up box sections**
 - built-up beams
 - usually site-fabricated
 - bigger spans

Timber Elements

- **trusses**
 - long spans
 - versatile
 - common in roofs
Timber Elements

- folded plates and arch panels
 - usually of plywood

Timber Elements

- arches and lamellas
 - arches commonly laminated timber
 - long spans
 - usually only for roofs

Timber Elements

- beams
 - joists
 - girders
 - lateral bracing
 - deflection
 - elastic
 - creep

Approximate Depths

- Detailed diagrams and tables showing approximate depths for various timber elements.
Wood Design

- **National Design Specification**
 - National Forest Products Association
 - ASD & LRFD (combined 2005)
 - adjustment factors x tabulated stress = allowable stress
 - adjustment factors terms, C with subscript
 - i.e, bending:

$$f_b \leq F_b' = F_b \times (\text{product of adjustment factors})$$

Allowable Stresses

- **design values**
 - F_b: bending stress
 - F_t: tensile stress
 - F_v: horizontal shear stress
 - F_{cL}: compression stress (perpendicular to grain)
 - F_c: compression stress (parallel to grain)
 - E: modulus of elasticity
 - F_p: bearing stress (parallel to grain)
Adjustment Factors

- terms
 - C_D = load duration factor
 - C_M = wet service factor
 - 1.0 dry $\leq 16\%$ MC
 - C_F = size factor
 - visually graded sawn lumber and round timber $> 12''$ depth

\[
C_F = \left(\frac{12}{d} \right)^{1/6} \leq 1.0
\]

Adjustment Factors

- terms
 - C_{fu} = flat use factor
 - not decking
 - C_i = incising factor
 - increase depth for pressure treatment
 - C_t = temperature factor
 - lose strength at high temperatures

Load Combinations

- design loads, take the bigger of
 - $(\text{dead loads})/0.9$
 - $(\text{dead loads} + \text{any possible combination of live loads})/C_D$

- deflection limits
 - no load factors
 - for stiffer members:
 - $\Delta_T \text{ max from } LL + 0.5(DL)$
 - for instantaneous deflection
Deflection Limits

- relies on Uniform Building Code specs

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
</tbody>
</table>

Wood Beam Design - Glulam

- calculate S_{required}
- choose width and height so that $bh^2/6 > S_{\text{req'd}}$
- evaluate V, Δ, T
- consider bracing, connections

Wood Columns

- slenderness ratio = $L/d_{\text{min}} = L/d_1$
- $d_1 =$ smaller dimension
- $l_e/d \leq 50$ (max)

$$f_c = \frac{P}{A} \leq F'_c$$

- where F'_c is the allowable compressive strength parallel to the grain
Allowable Wood Stress

\[F'_c = F_c \left(C_D \right) \left(C_M \right) \left(C_t \right) \left(C_F \right) \left(C_p \right) \]

- where:
 \(F_c \) = compressive strength parallel to grain
 \(C_D \) = load duration factor
 \(C_M \) = wet service factor (1.0 dry)
 \(C_t \) = temperature factor
 \(C_F \) = size factor
 \(C_p \) = column stability factor

Strength Factors

- wood properties and load duration, \(C_D \)
 - short duration
 - higher loads
 - normal duration
 - \(> 10 \) years

- stability, \(C_p \)
 - combination curve - tables
 \[F'_c = F_c^* C_p = \left(F_c C_D \right) C_p \]

Procedure

1. obtain \(F'_c \)
 - find \(l_e/d \) or assume \(l_e/d \leq 50 \)
 - compute \(F_{cE} = \frac{K_{cE} E}{\left(l_e/d \right)^2} \)
 - \(K_{cE} = 0.3 \) sawn
 - \(K_{cE} = 0.418 \) glu-lam
 - compute \(F_c^* \approx F_c C_D \)
 - find \(F_{cE}/F_c^* \) and get \(C_p \)
 \[F'_c = F_c^* C_p \]
Procedure

2. select a section
 - if P & A known, set stress at limit
 - solve for ℓ, L, or d_{\min}
 - if P & ℓ known,
 - find A, or d_{\min}

3. continue from 2 until F_c' satisfied

Eccentric Loading Stress Limit

- in reality, as the column flexes, the moment increases

- P-Δ effect

\[
\frac{f_a}{F_a} + \frac{f_b \times (\text{Magnification factor})}{F_{bx}} \leq 1.0
\]

Column with Bending Design

- interaction equation

\[
\left[\frac{f_c'}{F_c'} \right]^2 + \frac{f_{bx}}{F_{bx}' \left[1 - \frac{f_c'}{F_{cEx}} \right]} \leq 1.0
\]

() term – magnification factor for P-Δ

F'_{bx} – allowable bending strength

Structural Supervision

- review changes in shop drawings!
- inspection of construction
 - verify compliance with plans
- some materials require more
 - variability of materials
 - sampling and testing
Construction Requirements - Wood

- **if not treated**
 - height above exposed ground
 - 18” joists, 12” girders
 - in masonry or concrete
 - provide ½” air space
- **foundation sills must be treated**
- **structural members**
 - must be protected from exposure to weather and water

Construction Requirements - Wood

- **crawl space ventilation**
- **fire stops**
 - walls
 - at ceiling and floor and every 10’ along
 - interconnections
 - soffits and dropped ceilings
 - concealed spaces
 - access for passage of fire
 - stairways & between floors and roof