Masonry Construction

- columns
- beams
- arches
- walls
- footings

Masonry Construction

- solid, grouted, hollow
- unreinforced
- reinforced
- prestressing
Masonry Construction 4
Lecture 26
ARCH 631
F2007abn

Masonry Materials

- brick
- concrete masonry units

Masonry Construction 5
Lecture 26
ARCH 631
F2007abn

Masonry Materials

- mortar
 - water, masonry cement, sand, lime
 - types:
 - M higher strength – 2500 psi (ave.)
 - S medium high strength – 1800 psi
 - N medium strength – 750 psi
 - O medium low strength – 350 psi
 - K low strength – 75 psi

Masonry Construction 6
Lecture 26
ARCH 631
F2007abn

Masonry Materials

- reinforcement
 - deformed bars
 - prestressing strand
 - development length
 - anchorage
 - splices
 - ties
- steel or composite

Masonry Construction 7
Lecture 26
ARCH 631
F2007abn

Masonry Materials

- grout
 - high slump concrete
 - fills voids and fixes rebar
- prisms
 - used to test strength, f_m
Masonry Materials

- **fire resistance**
 - fire-resistive structural material
 - details important to prevent leaks or cracks
 - retains strength if exposure not too long
 - mortar and cmu’s dehydrate
 - loses 30-60% after that
 - no toxic fumes
 - cover necessary to protect steel

- **moisture resistance**
 - weathering index for brick
 - bond and detailing
 - expansion or shrinking from water
 - provide control joints
 - parapets, corners, long walls

Masonry Walls

- based on empirical requirements for minimum wall thickness and height
 - h/t < 25 (UBC 2105.2 h/t<35)
- wall thicknesses often increased by 4”/story
- bearing walls > 3-5 stories uneconomical, steel or concrete frames used
- strength design limit states:
 - serviceability: deflection
 - ultimate: compression & tension

Masonry Walls

- compression + bending

\[P = f_a A \]

axial stress

\[f_b = \frac{M}{S} \]

bending stress

\[e = \frac{M}{P} \]

virtual eccentricity

\[f_a + f_b = \frac{P}{A + M/S} \]

combined
Masonry Walls

- equivalent eccentricity with lateral load

\[e = \frac{M}{P} \]

\[e_1 = \text{virtual eccentricity} \]

Masonry Walls

- tension normal to bed joints
- Not allowed in MSJC code
- tension parallel to bed joints
- strong units
- weak units

Masonry Beam & Wall Design

- limit tensile stress in mortar
- working stress design (ASD)
 - linear stresses in masonry
 - no tension in masonry when reinforced
 - elastic stress in steel < \(f_y \)
 - additional compression in walls
- masonry strength = \(f'_m \)

Masonry Beam & Wall Design

- reinforcement increases capacity & ductility

Figure 2.10 Reinforced masonry beams and lintels.
Masonry Design

- f_s is not the yield stress
- f_m is the stress in the masonry

Allowable Masonry Stresses

- tension - unreinforced only

<table>
<thead>
<tr>
<th>Mortar type</th>
<th>N or S</th>
<th>N or S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland cement/mortar</td>
<td>37 (256)</td>
<td>72 (511)</td>
</tr>
<tr>
<td>Masonry cement or air entrained</td>
<td>70 (479)</td>
<td>77 (533)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mortar type</th>
<th>N or S</th>
<th>N or S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal to bed joints</td>
<td>40 (279)</td>
<td>12 (83)</td>
</tr>
<tr>
<td>Solid units</td>
<td>25 (172)</td>
<td>12 (83)</td>
</tr>
<tr>
<td>Hollow units</td>
<td>25 (172)</td>
<td>12 (83)</td>
</tr>
<tr>
<td>Fully grouted</td>
<td>25 (172)</td>
<td>12 (83)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mortar type</th>
<th>N or S</th>
<th>N or S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel to bed joints in running bond</td>
<td>64 (441)</td>
<td>40 (279)</td>
</tr>
<tr>
<td>Solid units</td>
<td>64 (441)</td>
<td>40 (279)</td>
</tr>
<tr>
<td>Hollow units</td>
<td>64 (441)</td>
<td>40 (279)</td>
</tr>
<tr>
<td>Fully grouted</td>
<td>64 (441)</td>
<td>40 (279)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mortar type</th>
<th>N or S</th>
<th>N or S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel to bed joints in masonry not bed in running bond</td>
<td>133 (917)</td>
<td>133 (917)</td>
</tr>
<tr>
<td>Continuous grout sections parallel to test points</td>
<td>133 (917)</td>
<td>133 (917)</td>
</tr>
<tr>
<td>Other</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

- $f_m = 1/3 f_m$ (unreinforced)
- $f_m = 0.45 f_m$ (reinforced)

- shear, unreinforced masonry
 - $F_v = 1.5 \sqrt{f_m} \leq 120$ psi

- shear, reinforced masonry
 - $M/Vd \leq 0.25$: $F_v = 3.0 \sqrt{f_m}$
 - $M/Vd \geq 1.0$: $F_v = 2.0 \sqrt{f_m}$

Allowable Reinforcement Stress

- tension
 - a) Grade 40 or 50 $F_s = 20$ ksi
 - b) Grade 60 $F_s = 24$ ksi
 - c) Wire joint $F_s = 30$ ksi

- *no allowed increase by 1/3 for combinations with wind & earthquake
 - did before 2011 MSJC
Reinforcement, M_s

\[
\Sigma F = 0: \quad A_s f_s = f_m b \frac{kd}{2} \\
\Sigma M \text{ about } C_m: \quad M_s = A_s f_s jd = \rho bd^2 j f_s
\]

if $f_s = F_s$ (allowable) the moment capacity is limited by the steel

MSJC: $F_s = 20 \text{ ksi, } 24 \text{ ksi or } 30 \text{ ksi by type}$

Masonry Lintels

- distributed load
 - triangular or trapezoidal

Strategy for RM Flexural Design

- to size section and find reinforcement
 - find ρ_b knowing f_m' and f_y
 - size section for some $\rho < \rho_b$
 - get k, j and $\rho j f_s'$
 - $bd^2 = \frac{M}{\rho j f_s'}$
 - get b & d in nice units
 - size reinforcement (bar size & #): $A_s = \frac{M}{F_s' jd}$
 - check design: $M_s = A_s F_s' jd > M$
 \[
f_b = \frac{M}{0.5bd^2 jk} < F_b
\]
Ultimate Strength Design

- LRFD
- like reinforced concrete
- useful when beam shear is high
- improved inelastic model
 - ex. earthquake loads

Masonry Walls

- one-way or two-way bending
- usually use hollow units (< 75% solid)
- reinforcement grouted
 - into cells if hollow units
 - between wythes if solid
- reinforcement usually at center
- reinforcement in compression ineffective
- avoid stirrups
- desirable in seismic zones

Masonry Shear Walls

- bearing, bending, and shear
 - compression increases resistance
 \[f_v = \frac{VQ}{I_n b} \]
 or
 \[\frac{V}{A_{nv}} \leq F_v \]
 - unreinforced stress limit 1.5\(\sqrt{f_m'} \) \leq 120 psi

Masonry Walls

- axial force-moment interaction diagram
 \[\frac{f_a + f_b}{F_a + F_b} \leq 1 \]
Masonry Shear Walls

• (and beams)
 – reinforcement strength included:
 \[F_v = F_{vm} + F_{vs} \]
 – where
 \[F_{vm} = \frac{1}{2} \left[4.0 - 1.75 \left(\frac{M}{Vd} \right) \sqrt{f_m'} \right] + 0.25 \frac{P}{A_n} \]
 \[F_{vs} = 0.5 \left(\frac{A_F d}{A_{m,s}} \right) \]
 – stress limit depends on ratio of bending moment to overturning moment: \(M/Vd \)
 – spacing limits

Masonry Columns and Pilasters

• must be reinforced

Masonry Shear Walls

• model as deep cantilever beam
 – flexure reinforcement
 – shear stirrups

Masonry Columns and Pilasters

• considered a column when \(b/t < 3 \) and \(h/t > 4 \)
 – slender is
 – 8” one side
 – \(h/t \leq 25 \)
 • needs ties
 • eccentricity
 – 10% of side dimension required
 – interaction diagrams like r/c
Masonry Columns

- allowable axial load

\[P_a = \left[0.25 f'_m A_n + 0.65 A_{st} F_s \right] \left[1 - \left(\frac{h}{140r} \right)^2 \right] \]

\(h/r \leq 99 \)
\(h/r > 99 \)
(unreinforced \(A_{st} = 0 \))

\[P_a = \left[0.25 f'_m A_n + 0.65 A_{st} F_s \right] \left(\frac{70r}{h} \right)^2 \]

\(h = \) effective length
\(r = \) radius of gyration
\(A_n = \) effective area of masonry
\(A_{st} = \) effective area of column reinforcement
\(F_s = \) allowable compressive stress in column reinforcement

Masonry Pilasters, Arches

- column in wall

- increase bearing area and stiffness

Construction Supervision

- proper placement of all reinforcement
- prism construction
 - masonry
 - mortar
- hot/cold weather protection