Masonry
- columns
- beams
- arches
- walls
- footings

Masonry Construction
- solid, grouted, hollow
- unreinforced
- reinforced
- prestressing
Masonry Materials

- brick
- concrete masonry units

Masonry Materials

- mortar
 - water, masonry cement, sand, lime
 - types:
 - M higher strength – 2500 psi (ave.)
 - S medium high strength – 1800 psi
 - N medium strength – 750 psi
 - O medium low strength – 350 psi
 - K low strength – 75 psi

Masonry Materials

- reinforcement
 - deformed bars
 - prestressing strand
 - development length
 - anchorage
 - splices
 - ties
- steel or composite

Masonry Materials

- grout
 - high slump concrete
 - fills voids and fixes rebar
- prisms
 - used to test strength, f'_m
Masonry Materials

- **fire resistance**
 - fire-resistive structural material
 - details important to prevent leaks or cracks
 - retains strength if exposure not too long
 - mortar and cmu’s dehydrate
 - loses 30-60% after that
 - no toxic fumes
 - cover necessary to protect steel

Masonry Walls

- based on empirical requirements for minimum wall thickness and height
 - $h/t < 25$ (UBC 2105.2 $h/t<35$)
- wall thicknesses often increased by 4”/story
- bearing walls > 3-5 stories uneconomical, steel or concrete frames used
- strength design limit states:
 - serviceability: deflection
 - ultimate: compression & tension

Masonry Materials

- **moisture resistance**
 - weathering index for brick
 - bond and detailing
 - expansion or shrinking from water
 - provide control joints
 - parapets, corners, long walls

Masonry Walls

- **compression + bending**
 - $f_a = \frac{P}{A}$
 - axial stress
 - $f_b = \frac{M}{S}$
 - bending stress
 - $e = \frac{M}{P}$
 - virtual eccentricity
 - combined
Masonry Walls

• equivalent eccentricity with lateral load

\[e_1 = \frac{M}{P} \]

virtual eccentricity

Masonry Beam & Wall Design

• MSJC (ACI, ASCE, TMS)
 – limit tensile stress in mortar
 – working stress design (ASD)
 • linear stresses in masonry
 • no tension in masonry when reinforced
 • elastic stress in steel < \(f_y \)
 • additional compression in walls
 – masonry strength = \(f'_m \)

Masonry Walls

tension normal to bed joints

Not allowed in MSJC code

tension parallel to bed joints

strong units

weak units

Masonry Beam & Wall Design

• reinforcement increases capacity & ductility
Masonry Design

- f_s is **not** the yield stress
- f_m is the stress in the masonry

Allowable Masonry Stresses

- **tension - unreinforced only**

 ![Diagram of masonry design and stress-strain relationship]

 \[\rho = \frac{A_s}{bd} \]

Allowable Masonry Stresses

- **flexure**
 - $F_b = 1/3 f'_m$ (unreinforced)
 - $F_b = 0.45 f'_m$ (reinforced)

- **shear, unreinforced masonry**
 - $F_V = 1.5 \sqrt{f'_m} \leq 120$ psi

- **shear, reinforced masonry**
 - $M/V_d \leq 0.25$: $F_V = 3.0 \sqrt{f'_m}$
 - $M/V_d \geq 1.0$: $F_V = 2.0 \sqrt{f'_m}$

Allowable Reinforcement Stress

- **tension**
 - a) Grade 40 or 50 $F_s = 20$ ksi
 - b) Grade 60 $F_s = 24$ ksi
 - c) Wire joint $F_s = 30$ ksi

- *no allowed increase by 1/3 for combinations with wind & earthquake*
 - did before 2011 MSJC
Reinforcement, M_s

\[
\Sigma F = 0: \quad A_s f_s = f_m b \frac{kd}{2}
\]

\[
\Sigma M \text{ about } C_m: \quad M_s = A_s f_s jd = \rho bd^2 j f_s
\]

if $f_s = F_s$ (allowable) the moment capacity is limited by the steel

MSJC: $F_s = 20$ ksi, 24 ksi or 30 ksi by type

Masonry Lintels

- distributed load
 - triangular or trapezoidal

Strategy for RM Flexural Design

- to size section and find reinforcement
 - find ρ_b knowing f'_m and f_y
 - size section for some $\rho < \rho_b$
 - get k, j
 - $bd^2 = \frac{M}{\rho j F}$
 - get b & d in nice units
 - size reinforcement (bar size & #): $A_s = \frac{M}{F_s jd}$
 - check design: $M_s = A_j F_s j d > M$
 \[
f_b = \frac{M}{0.5bd^2 j k} < F_b
\]
Ultimate Strength Design
- LRFD
- like reinforced concrete
- useful when beam shear is high
- improved inelastic model
 - ex. earthquake loads

Masonry Walls
- one-way or two-way bending
- usually use hollow units (< 75% solid)
- reinforcement grouted
 - into cells if hollow units
 - between wythes if solid
- reinforcement usually at center
- reinforcement in compression ineffective
- avoid stirrups
- desirable in seismic zones

Masonry Walls
- axial force-moment interaction diagram
 \[
 \frac{f_a}{F_a} + \frac{f_b}{F_b} \leq 1
 \]

Masonry Shear Walls
- bearing, bending, and shear
 - compression increases resistance
 \[
 f_v = \frac{VQ}{I_n b} \quad \text{or} \quad \frac{V}{A_{nv}} \leq F_v
 \]
 - unreinforced
 - reinforced
 - unreinforced stress limit \(1.5 \sqrt{f_m} \leq 120\) psi
Masonry Shear Walls

- (and beams)
 - reinforcement strength included:
 \[F_v = F_{vm} + F_{vs} \]
 - where
 \[F_{vm} = \frac{1}{2} \left[4.0 - 1.75 \left(\frac{M}{Vd} \right) \right] \sqrt{f'_m} + 0.25 \frac{P}{A_n} \]
 \[F_{vs} = 0.5 \left(\frac{A_s f_v d}{A_{mv} s} \right) \]
 - stress limit depends on ratio of bending moment to overturning moment: \(M/Vd \)
 - spacing limits

Masonry Columns and Pilasters

- must be reinforced

Masonry Shear Walls

- model as deep cantilever beam
 - flexure reinforcement
 - shear stirrups

Masonry Columns and Pilasters

- considered a column when \(b/t<3 \) and \(h/t>4 \)
 - slender is
 - 8” one side
 - \(h/t \leq 25 \)
 - needs ties
 - eccentricity
 - 10% of side dimension required
 - interaction diagrams like r/c
Masonry Columns

- **allowable axial load**

\[
P_a = \begin{cases}
0.25 f_m' A_n + 0.65 A_{st} F_s & \text{if } h/r \leq 99 \\
0.25 f_m' A_n + 0.65 A_{st} F_s \left(\frac{70r}{h} \right)^2 & \text{if } h/r > 99
\end{cases}
\]

(unreinforced \(A_{st} = 0 \))

- \(h = \) effective length
- \(r = \) radius of gyration
- \(A_n = \) effective area of masonry
- \(A_{st} = \) effective area of column reinforcement
- \(F_s = \) allowable compressive stress in column reinforcement

Masonry Pilasters, Arches

- **column in wall**

 - increase bearing area and stiffness

Construction Supervision

- **proper placement of all reinforcement**
- **prism construction**
 - masonry
 - mortar
- **hot/cold weather protection**