Masonry Construction

- columns
- beams
- arches
- walls
- footings

Learning Evaluation
Masonry Materials

- brick
- concrete masonry units

Masonry Materials

- mortar
 - water, masonry cement, sand, lime
 - types:
 - M higher strength – 2500 psi (ave.)
 - S medium high strength – 1800 psi
 - N medium strength – 750 psi
 - O medium low strength – 350 psi
 - K low strength – 75 psi

Masonry Materials

- reinforcement
 - deformed bars
 - prestressing strand
 - development length
 - anchorage
 - splices
 - ties
- steel or composite

Masonry Materials

- grout
 - high slump concrete
 - fills voids and fixes rebar
- prisms
 - used to test strength, f'_m
Masonry Materials

• fire resistance
 – fire-resistive structural material
 – details important to prevent leaks or cracks
 – retains strength if exposure not too long
 • mortar and cmu’s dehydrate
 • loses 30-60% after that
 – no toxic fumes
 – cover necessary to protect steel

Masonry Walls

– based on empirical requirements for minimum wall thickness and height
 • h/t < 25 (UBC 2105.2 h/t<35)
– wall thicknesses often increased by 4”/story
– bearing walls > 3-5 stories uneconomical, steel or concrete frames used
– strength design limit states:
 • serviceability: deflection
 • ultimate: compression & tension

Masonry Materials

• moisture resistance
 – weathering index for brick
 – bond and detailing
 – expansion or shrinking from water
 • provide control joints
 • parapets, corners, long walls

Masonry Walls

• compression + bending

\[
P = \frac{M}{I} = \frac{M}{S}
\]

axial stress

\[
f_a = \frac{P}{A}
\]

virtual eccentricity

combined

\[
f_a + f_b = \frac{M}{A + S} - f_a
\]
Masonry Walls

- equivalent eccentricity with lateral load

\[e_{\text{eq}} = \frac{M}{P} \]

\[e_{1} = \frac{M}{P} \]

Masonry Walls

- tension normal to bed joints
- tension parallel to bed joints
- Not allowed in MSJC code
- strong units
- weak units

Masonry Beam & Wall Design

- **MSJC (ACI, ASCE, TMS)**
 - limit tensile stress in mortar
 - working stress design (ASD)
 - linear stresses in masonry
 - no tension in masonry when reinforced
 - elastic stress in steel < \(f_y \)
 - additional compression in walls
 - masonry strength = \(f'_{m} \)

Masonry Beam & Wall Design

- reinforcement increases capacity & ductility

Figure 2.10 Reinforced masonry beams and slabs.
Masonry Design

- f_s is not the yield stress
- f_m is the stress in the masonry

![Diagram of Masonry Design](image)

$$p = \frac{A_s}{bd}$$

Allowable Masonry Stresses

- **tension** - unreinforced only

<table>
<thead>
<tr>
<th>Table 3.2.3.2</th>
<th>Allowable flexural tensile stresses for dry and mortarless masonry, psi (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction of flexural tensile stress and masonry type</td>
<td>Mortar type</td>
</tr>
<tr>
<td>Portland cement/linseed or mortarless masonry cement</td>
<td>Masonry cement or air entrained, Portland cement</td>
</tr>
<tr>
<td>M or 5</td>
<td>N</td>
</tr>
</tbody>
</table>
| Normal masonry joints | Saturated Hollow units | Ungrouted Hollow units | Grouted Hollow units | Parallel to bed joints in masonry bonded in mortar \(d \leq 1.5 \sqrt{f_m} \leq 120 \text{ psi} \)
| 50/206 (202) | 80/153 (1032) | 64/145 (453) | 40/93 (293) | 40/93 (293) |
| 60/249 (269) | 96/210 (607) | 80/181 (547) | 60/136 (346) | 60/136 (346) |
| 75/375 (333) | 120/271 (835) | 100/236 (852) | 80/193 (852) | 80/193 (852) |
| 100/505 (440) | 160/333 (1451) | 125/272 (1032) | 100/236 (852) | 100/236 (852) |
| 125/637 (1727) | 200/413 (876) | 150/345 (1451) | 125/272 (1032) | 125/272 (1032) |
| 150/797 (1727) | 250/539 (1117) | 200/413 (876) | 150/345 (1451) | 150/345 (1451) |
| 175/913 (1584) | 300/617 (1451) | 250/539 (1117) | 200/413 (876) | 200/413 (876) |
| 200/1025 (1406) | 350/755 (1584) | 250/539 (1117) | 200/413 (876) | 200/413 (876) |
| 225/1138 (1584) | 400/853 (1666) | 300/617 (1451) | 250/539 (1117) | 250/539 (1117) |
| 250/1250 (1666) | 450/927 (1584) | 350/755 (1584) | 300/617 (1451) | 300/617 (1451) |

- **flexure**
 - $F_b = 1/3 f'_m$ (unreinforced)
 - $F_b = 0.45 f'_m$ (reinforced)

- **shear**
 - unreinforced masonry
 - $F_v = 1.5 \sqrt{f'_m} \leq 120$ psi
 - reinforced masonry
 - $M/Vd \leq 0.25$: $F_v = 3.0 \sqrt{f'_m}$
 - $M/Vd \geq 1.0$: $F_v = 2.0 \sqrt{f'_m}$

Allowable Reinforcement Stress

- **tension**
 - a) Grade 40 or 50 $F_s = 20$ ksi
 - b) Grade 60 $F_s = 24$ ksi
 - c) Wire joint $F_s = 30$ ksi

- *no allowed increase by 1/3 for combinations with wind & earthquake
 - did before 2011 MSJC
Reinforcement, M_s

\[\Sigma F = 0: \quad A_s f_s = f_m b \frac{kd}{2} \]

\[\Sigma M \text{ about } C_m: \quad M_s = A_s f_s jd = \rho bd^2 j f_s \]

If $f_s = F_s$ (allowable) the moment capacity is limited by the steel

MSJC: $F_s = 20$ ksi, 24 ksi or 30 ksi by type

Masonry Lintels

- **Distributed load**
 - Triangular or trapezoidal

Reinforcement, M_m

\[\Sigma F = 0: \quad A_s f_s = f_m b \frac{kd}{2} \]

\[\Sigma M \text{ about } T_s: \quad M_m = f_m b \frac{kd}{2} jd = 0.5 f_m bd^2 jk \]

If $f_s = F_s$ (allowable) the moment capacity is limited by the steel

MSJC $F_b = 0.33 f'_m$

Strategy for RM Flexural Design

- **To size section and find reinforcement**
 - Find ρ_b knowing f'_m and f_y
 - Size section for some $\rho < \rho_b$
 - Get k, j
 - $bd^2 = \frac{M}{\rho j F}$
 - Needs to be sized for shear also
 - Get b & d in nice units
 - Size reinforcement (bar size & #): $A_s = \frac{M}{F_s jd}$
 - Check design: $M_s = A_s f_s jd > M$
 - $f_b = \frac{M}{0.5 bd^2 jk} < F_b$
Ultimate Strength Design

- LRFD
- like reinforced concrete
- useful when beam shear is high
- improved inelastic model
 - ex. earthquake loads

Masonry Walls

- one-way or two-way bending
- usually use hollow units (< 75% solid)
- reinforcement grouted
 - into cells if hollow units
 - between wythes if solid
- reinforcement usually at center
- reinforcement in compression ineffective
- avoid stirrups
- desirable in seismic zones

Masonry Walls

- axial force-moment interaction diagram
 \[
 \frac{f_u}{F_a} + \frac{f_b}{F_b} \leq 1
 \]

Masonry Shear Walls

- bearing, bending, and shear
 - compression increases resistance

\[
 f_v = \frac{VQ}{I_n b} \quad \text{or} \quad \frac{V}{A_{nv}} \leq F_v
\]

- unreinforced stress limit \(1.5\sqrt{f_m} \leq 120 \text{ psi}\)
Masonry Shear Walls

• (and beams)

 – reinforcement strength included:

\[
F_v = F_{vm} + F_{vs}
\]

 – where

\[
F_{vm} = \frac{1}{2} \left(4.0 - 1.75 \left(\frac{M}{Vd} \right) \sqrt{f_m'} \right) + 0.25 \frac{P}{A_n}
\]

\[
F_{vs} = 0.5 \left(\frac{A_F}{A_{nv,s}} \right)
\]

 – stress limit depends on ratio of bending moment to overturning moment: M/Vd

 – spacing limits

Masonry Columns and Pilasters

• must be reinforced

Masonry Shear Walls

• model as deep cantilever beam

 – flexure reinforcement

 – shear stirrups

Masonry Columns and Pilasters

• considered a column when b/t<3 and h/t>4

 • slender is

 – 8” one side

 – h/t ≤ 25

 • needs ties

 • eccentricity

 – 10% of side dimension required

 – interaction diagrams like r/c
Masonry Columns

- allowable axial load

\[P_a = \begin{cases} 0.25 f_m'A_n + 0.65A_{st}F_s & \text{if } h/r \leq 99 \\ 0.25 f_m'A_n + 0.65A_{st}F_s \left(\frac{70r}{h} \right)^2 & \text{if } h/r > 99 \end{cases} \]

\(h = \) effective length
\(r = \) radius of gyration
\(A_n = \) effective area of masonry
\(A_{st} = \) effective area of column reinforcement
\(F_s = \) allowable compressive stress in column reinforcement

Masonry Pilasters, Arches

- column in wall
 - increase bearing area and stiffness

Construction Supervision

- proper placement of all reinforcement
- prism construction
 - masonry
 - mortar
- hot/cold weather protection