Foundations and retaining walls

Structural vs. Foundation Design

• structural design
 – choice of materials
 – choice of framing system
 – uniform materials and quality assurance
 – design largely independent of geology, climate, etc.

• foundation design
 – cannot specify site materials
 – site is usually predetermined
 – framing/structure predetermined
 – site geology influences foundation choice
 – no site the same
 – no design the same

Foundation

• the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock
Design Assumptions

- validity dependant on:
 - quality of site investigation
 - construction monitoring
 - your experience
 - flexibility of the design

Soil Properties & Mechanics

- compressibility
 - settlements

- strength
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, q_u
 - allowable bearing capacity, $q_{a} = \frac{q_u}{S.F.}$

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior
Bearing Failure

- shear

slip zone
punched wedge

Lateral Earth Pressure

- passive vs. active

active (trying to move wall)
passive (resists movement)

Settlements - Considerations

- How do we estimate the amount for a given design?

- What are the tolerable movements?

- If our estimate is greater than the tolerable movement, what do we do?

Settlements - Components

- vertical
 - immediate (sands)
 - consolidation (clays)
 - secondary (organic soils/peats)

- tilting
 - eccentric loads
 - non-uniform stress distribution

- distortion - $\frac{\Delta}{L}$
Excessive Settlement

- we can try
 - deeper foundation
 - alter structure
 - concrete/soil mat foundation
 - reduce the load
 - move the structure
 - modify the foundation type
 - modify the soil

Foundation Materials

- concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length
- other materials (piles)
 - steel
 - wood
 - composite

Construction

- unique to type of footing
 - excavation
 - sheeting and bracing
 - water control
 (drainage/stabilization)
 - fill: placement & compaction
 - pile driver or hammer
 - caisson
 - underpinning (existing foundation)

Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics
Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure * (factored loads)

Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings

Types of Foundations

- mat foundations
- retaining walls
- basement walls
- pile foundations
- drilled piers

Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column
 - reduces stress from load to size the ground can withstand
Actual vs. Design Soil Pressure

- stress distribution is a function of
 - footing rigidity
 - soil behavior

- linear stress distribution assumed

Concrete Spread Footings

- plain or reinforced
- ACI specifications
- \(P_u = \) combination of factored \(D, L, W \)

- ultimate strength
 - \(V_u \leq \phi V_c : \phi = 0.75 \) for shear
 - plain concrete has shear strength
 - \(M_u \leq \phi M_n : \phi = 0.9 \) for flexure

Concrete Spread Footings

- failure modes
 - shear
 - bending

Concrete Spread Footings

- shear failure

 - one way shear
 - two way shear
Over and Under-reinforcement

- reinforcement ratio for bending
 \[\rho = \frac{A_s}{bd} \]
 - use as a design estimate to find \(A_s, b, d \)
 - max \(\rho = 0.75 \rho_b \)
 - minimum for slabs & footings of uniform thickness
 \[\frac{A_s}{bh} = 0.002 \text{ grade 40/50 bars} \]
 \[= 0.0018 \text{ grade 60 bars} \]

Reinforcement Length

- need length, \(l_d \)
 - bond
 - development of yield strength

Column Connection

- bearing of column on footing
 \[P_u \leq \phi P_n = \phi (0.85 f'_c A_t) \]
 \(\phi = 0.65 \) for bearing

- dowel reinforcement
 - if \(P_u > P_b \), need compression reinforcement
 - min of 4 - #5 bars (or 15 metric)

Wall Footings

- continuous strip for load bearing walls
- plain or reinforced
- behavior
 - wide beam shear
 - bending of projection
- dimensions usually dictated by codes for residential walls
- light loads
Wall Footings - plain vs. reinforced

- trade off in amounts of material
 - can save time if cost of extra concrete is justified (plain)
 - local codes may not allow plain footings
 - with same load, plain about twice as thick as minimally reinforced footing

Eccentrically Loaded Footings

- footings subject to moments

 \[M = Pe \]

 - soil pressure resultant force may not coincide with the centroid of the footing

Differential Soil Pressure

- to avoid large rotations, limit the differential soil pressure across footing
- for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement

Guidelines

- want resultant of load from pressure inside the middle third of base
 - ensures stability with respect to overturning
 \[SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} = \frac{R \cdot x}{M} \geq 1.5 \]
- pressure under toe (moment) \(\leq q_a \)
- shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings
- supports two columns
- used when space is tight and spread footings would overlap or when at property line
- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

Combined Footing Types
- rectangular
- trapezoid
- strap or cantilever
 - prevents overturning of exterior column
- raft/mat
 - more than two columns over an extended area

Proportioning
- uniform settling is desired
- area is proportioned with sustained column loads
- resultant coincides with centroid of footing area for uniformly distributed pressure assuming rigid footing

\[q_{\text{max}} \leq q_a \]

\[R = P_1 + P_2 \]

Multiple Column Footings
- used where bearing capacity of subsoil is so low that large bearing areas are needed
- grid foundation
 - continuous strips between columns
 - treat like rectangular combined footings with moment for beam
Multiple Column Footings

– when bearing capacity is even lower, strips in grid foundation merge into mat
 • upside down flat slab or plate

![Multiple Column Footings](image)

Settling of Multiple Column Footings

– use if we can’t space columns such that the centroid of foundation coincides with load resultant
 – geometry helps reduce differential settlement
 • variable soil
 • structure sensitive to differential settlements

Mat Foundations

– rigid foundations
 • soil pressures presumed linear
– flexible foundation
 • settlements and pressures no longer linear

\[P_1 < P_2 > P_3 \]

\[S_1 < S_2 > S_3 \]

\[q = k_s \cdot s \]

\(k_s \) is a mechanical soil property

Retaining Walls

• purpose
 – retain soil or other material
• basic parts
 – wall & base
 – additional parts
 • counterfort
 • buttress
 • key
Retaining Walls

- considerations
 - overturning
 - settlement
 - allowable bearing pressure
 - sliding
 \[SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 - 2 \]
 - (adequate drainage)
- procedure
 - proportion and check stability with working loads
 - design structure with factored loads

\[SF = \frac{F_{\text{resist}}}{F_{\text{sliding}}} \geq 1.25 - 2 \]

Retaining Wall Types

- “gravity” wall
 - usually unreinforced
 - economical & simple
- cantilever retaining wall
 - common

Deep Foundations

- usage
 - when spread footings, mats won’t work
 - when they are required to transfer the structural loads to good bearing material
 - to resist uplift or overturning
 - to compact soil
 - to control settlements of spread or mat foundations
Deep Foundation Types

- piles - usually driven, 6”-8” φ, 5’ +
- piers
- caissons - drilled, excavated, concreted (with or without steel)
- drilled shafts
- bored piles 2.5’ - 10’/12’ φ
- pressure injected piles

Deep Foundations

- classification
 - by material
 - by shape
 - by function (structural, compaction...)
- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete

Piles Classified By Material

- timber
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)
- concrete
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling
Piles Classified By Material

- steel
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side

Piles Classified By Function

- end bearing pile (point bearing)
 \[P_a = A_p \cdot f_s \]
 for use in soft or loose materials over a dense base

- friction piles (floating)
 \[R_s = f(\text{adhesion}) \]
 \[R_p = 0 \]

Piles Classified By Function

- combination friction and end bearing

- uplift/tension piles
 structures that float, towers

- batter piles
 angled, cost more, resist large horizontal loads

Piles Classified By Function

- fender piles, dolphins, pile clusters
 large # of piles in a small area

- compaction piles
 - used to densify loose sands

- drilled piers
 - eliminate need for pile caps
 - designed for bearing capacity (not slender)
Pile Caps and Grade Beams

- like multiple column footing
- more shear areas to consider