Foundations and retaining walls

Structural vs. Foundation Design

• structural design
 – choice of materials
 – choice of framing system
 – uniform materials and quality assurance
 – design largely independent of geology, climate, etc.

Foundation

• the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock

Structural vs. Foundation Design

• foundation design
 – cannot specify site materials
 – site is usually predetermined
 – framing/structure predetermined
 – site geology influences foundation choice
 – no site the same
 – no design the same
Design Assumptions

- validity dependant on:
 - quality of site investigation
 - construction monitoring
 - your experience
 - flexibility of the design

Soil Properties & Mechanics

- compressibility
 - settlements

- strength
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, q_u
 - allowable bearing capacity, $q_a = \frac{q_u}{S.F.}$

Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior

Soil Properties & Mechanics

- strength, q_a
Bearing Failure

- shear

![Diagram showing slip zone and punched wedge]

Lateral Earth Pressure

- passive vs. active

![Diagram showing active and passive forces]

Settlements - Considerations

- How do we estimate the amount for a given design?
- What are the tolerable movements?
- If our estimate is greater than the tolerable movement, what do we do?

Settlements - Components

- vertical
 - immediate (sands)
 - consolidation (clays)
 - secondary (organic soils/peats)
- tilting
 - eccentric loads
 - non-uniform stress distribution
- distortion - $\frac{\Delta}{L}$
Excessive Settlement

- we can try
 - deeper foundation
 - alter structure
 - concrete/soil mat foundation
 - reduce the load
 - move the structure
 - modify the foundation type
 - modify the soil

Foundation Materials

- concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length

- other materials (piles)
 - steel
 - wood
 - composite

Construction

- unique to type of footing
 - excavation
 - sheeting and bracing
 - water control
 - (drainage/stabilization)
 - fill: placement & compaction
 - pile driver or hammer
 - caisson
 - underpinning (existing foundation)

Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics
Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure * (factored loads)

Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings

Types of Foundations

- mat foundations
- retaining walls
- basement walls
- pile foundations
- drilled piers

Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column
 - reduces stress from load to size the ground can withstand
Actual vs. Design Soil Pressure

- stress distribution is a function of
 - footing rigidity
 - soil behavior

- linear stress distribution assumed

Concrete Spread Footings

- plain or reinforced
- ACI specifications
- $P_u = \text{combination of factored } D, L, W$
- ultimate strength
 - $V_u \leq \phi V_c : \phi = 0.75$ for shear
 - plain concrete has shear strength
 - $M_u \leq \phi M_n : \phi = 0.9$ for flexure

Concrete Spread Footings

- failure modes
 - shear
 - bending

Concrete Spread Footings

- shear failure
 - one way shear
 - two way shear
Over and Under-reinforcement

- reinforcement ratio for bending
 - $\rho = \frac{A_s}{bd}$
 - use as a design estimate to find A_s, b, d
 - max $\rho = 0.75 \rho_b$
 - minimum for slabs & footings of uniform thickness
 \[\frac{A_s}{bh} = 0.002 \text{ grade } 40/50 \text{ bars} \]
 \[= 0.0018 \text{ grade } 60 \text{ bars} \]

Reinforcement Length

- need length, ℓ_d
 - bond
 - development of yield strength

Column Connection

- bearing of column on footing
 - $P_u \leq \phi P_n = \phi (0.85 f'c A_t)$
 \[\phi = 0.65 \text{ for bearing} \]
- dowel reinforcement
 - if $P_u > P_b$, need compression reinforcement
 - min of 4 bars and 0.005A_g

Wall Footings

- continuous strip for load bearing walls
- plain or reinforced
- behavior
 - wide beam shear
 - bending of projection
- dimensions usually dictated by codes for residential walls
- light loads
Wall Footings - plain vs. reinforced

- trade off in amounts of material
 - can save time if cost of extra concrete is justified (plain)
 - local codes may not allow plain footings
 - with same load, plain about twice as thick as minimally reinforced footing

Eccentrically Loaded Footings

- footings subject to moments

\[
P \rightarrow M = Pe
\]

- soil pressure resultant force may not coincide with the centroid of the footing

Differential Soil Pressure

- to avoid large rotations, limit the differential soil pressure across footing

 - for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement

Guidelines

- want resultant of load from pressure inside the middle third of base
 - ensures stability with respect to overturning
 \[
 SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} = \frac{R \cdot x}{M} \geq 1.5
 \]

 - pressure under toe (moment) \(\leq q_a \)
 - shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line

- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

Combined Footing Types

- rectangular
- trapezoid

- strap or cantilever
 - prevents overturning of exterior column

- raft/mat
 - more than two columns over an extended area

Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- resultant coincides with centroid of footing area for uniformly distributed pressure assuming rigid footing

\[q_{\text{max}} \leq q_{\text{a}} \]

\[R = P_1 + P_2 \]

Multiple Column Footings

- used where bearing capacity of subsoil is so low that large bearing areas are needed
- grid foundation
 - continuous strips between columns
 - treat like rectangular combined footings with moment for beam
Multiple Column Footings

- when bearing capacity is even lower, strips in grid foundation merge into mat
 - upside down flat slab or plate

![Image](https://example.com/image1.png)
Figure 1: Common types of mat foundation. (a) For plan, (b) plan enclosed under column, (c) wall slab, (d) plan with potential of foundation walls as part of slab.

Settling of Multiple Column Footings

- use if we can’t space columns such that the centroid of foundation coincides with load resultant
 - geometry helps reduce differential settlement
 - variable soil
 - structure sensitive to differential settlements

Mat Foundations

- rigid foundations
 - soil pressures presumed linear
- flexible foundation
 - settlements and pressures no longer linear

\[
P_1 < P_2 > P_3
\]

\[
s_1 < s_2 > s_3
\]

\[
q = k_s \cdot s
\]

\[k_s\] is a mechanical soil property

Retaining Walls

- purpose
 - retain soil or other material
- basic parts
 - wall & base
 - additional parts
 - counterfort
 - buttress
 - key

![Image](https://example.com/image2.png)
Figure 2: Retaining wall diagram.
Retaining Walls

• considerations
 – overturning
 – settlement
 – allowable bearing pressure
 – sliding

\[SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 - 2 \]

– (adequate drainage)

• procedure
 – proportion and check stability with working loads
 – design structure with factored loads

Retaining Wall Types

• “gravity” wall
 – usually unreinforced
 – economical & simple

• cantilever retaining wall
 – common

Deep Foundations

• usage
 – when spread footings, mats won’t work
 – when they are required to transfer the structural loads to good bearing material
 – to resist uplift or overturning
 – to compact soil
 – to control settlements of spread or mat foundations
Deep Foundation Types

- Piles - usually driven, 6”-8” φ, 5’ +
- Piers
- Caissons
- Drilled Shafts
- Bored Piles
- Pressure Injected Piles

Deep Foundations

- Classification
 - By material
 - By shape
 - By function (structural, compaction...)
- Pile Placement Methods
 - Driving with pile hammer (noise & vibration)
 - Driving with vibration (quieter)
 - Jacking
 - Drilling hole & filling with pile or concrete

Piles Classified By Material

- Timber
 - Use for temporary construction
 - To densify loose sands
 - Embankments
 - Fenders, dolphins (marine)
- Concrete
 - Precast: ordinary reinforcement or prestressed
 - Designed for axial capacity and bending with handling
Piles Classified By Material

- steel
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side

Piles Classified By Function

- end bearing pile (point bearing)
 \[P_a = A_p \cdot f_s \]
 for use in soft or loose materials over a dense base

- friction piles (floating)

- combination friction and end bearing

- uplift/tension piles
 structures that float, towers

- batter piles
 angled, cost more, resist large horizontal loads

- fender piles, dolphins, pile clusters
 large # of piles in a small area

- compaction piles
 - used to densify loose sands

- drilled piers
 - eliminate need for pile caps
 - designed for bearing capacity (not slender)
Pile Caps and Grade Beams

– like multiple column footing
– more shear areas to consider