construction
inspection & review

Supervision Practices - IBC

<table>
<thead>
<tr>
<th>Verification and Inspection of Steel Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material verification of high-strength bolts, nuts, and washers:</td>
</tr>
<tr>
<td>a. Identification markings to conform to ASTM standards specified in approved construction documents.</td>
</tr>
<tr>
<td>b. Manufacturer's certificate of compliance requested.</td>
</tr>
<tr>
<td>2. Inspection of high-strength bolts:</td>
</tr>
<tr>
<td>a. Bolt-type connections.</td>
</tr>
<tr>
<td>b. Stud-type connections.</td>
</tr>
<tr>
<td>3. Material verification of structural steel:</td>
</tr>
<tr>
<td>a. Identification markings to conform to ASTM standards specified in approved construction documents.</td>
</tr>
<tr>
<td>b. Manufacturer's certified test results.</td>
</tr>
<tr>
<td>4. Material verification of weld filler materials:</td>
</tr>
<tr>
<td>a. Identification markings to conform to AWS specification in approved construction documents.</td>
</tr>
<tr>
<td>b. Manufacturer's certificate of compliance required.</td>
</tr>
</tbody>
</table>

Office Hours

Supervision Practices - IBC

5. **Inspection of welding:**
 - **Structural steel:**
 1. Complete and partial penetration groove welds. | X |
 2. Continuous fillet welds. | X |
 3. Single-pass fillet welds, 1/8" | X |
 5. Filler and drain welds. | X |
 6. Reinforcing steel:
 1. Verification of weldability of reinforcing steel rebars, shear ASTM A 306. | X |
 2. Reinforcing steel-reinforced structural steel members and beams. | X |
 3. Shear connections. | X |
 4. Other reinforcing steel. | X |
 - **Steel frame joints:**
 1. Inspect steel frame joints for compliance with approved construction drawings. | X |
 a. Details such as bracing and stiffening. | X |
 b. Member locations. | X |
 c. Application of joint details at each connection. | X |

Notes:
- 1 inch = 25.4 mm.
- When applicable, see the Section 1.4.1.1, Structural Inspection for steel connections.
Steel Construction

- proper grade material
 - high strength bolts
- quality welds
- proper bolted conditions (ex. sc)
- fabrication and erection of steel frame connection details

Concrete Construction

- proper placement of all reinforcement
 - welding
 - splices
- mix design
 - slump
 - in-situ strength
 - cast cylinders
 - cylinder cores – if needed

Supervision Practices - IBC

- proper grade material
 - high strength bolts
- quality welds
- proper bolted conditions (ex. sc)
- fabrication and erection of steel frame connection details

Concrete Construction

- proper placement of all reinforcement
 - welding
 - splices
- mix design
 - slump
 - in-situ strength
 - cast cylinders
 - cylinder cores – if needed
Construction Supervision

- proper placement of all reinforcement
- prism construction
 - masonry
 - mortar
- hot/cold weather protection
- clear cavity

Wood Construction

- structural members
 - avoid damage
 - must be protected from exposure to weather and water
- connections & bracing

Fire and Life Safety

- for the Design Professional
 - by Carl Wren, P.E.
 - Chief Engineer, Austin Fire Department
 - Nuclear/Radiation Safety Engineering, ~29 years in Fire Protection – Former Commissioner, Texas Commission on Fire Protection, Former Member of Texas Task Force 1 - Firefighter, EMT, & Fire Inspector
 - guest lecture excerpts 2004 & 2008

Fire and Life Safety

- consequences, ex. 2005
 - 3,675 deaths
 - 17,925 injuries
 - $10,672,000,000 in property loss
- behavior & dynamics
 - a rapid (exponential growth), self sustaining oxidation process accompanied by the evolution of heat and light of varying intensities
Fire and Life Safety

• human viability impacts
 – heat, smoke, oxygen deprivation
 – CO produced by combustion
• controlling factors of fire
 – available fuel supply
 • furniture, structure, other contents
 – available oxidizer
 • ventilated or unventilated, chemical oxidizers
 – impact of design, construction, occupancy

Fire and Life Safety

• development – heat transfer
 – conduction, convection, radiation
 – exponential
 • quickly exceed $500^\degree C$ ($932^\degree F$) even > $650^\degree C$
 (1200$^\degree F$) at the ceiling of a confined fire
 within 4 to 5 minutes
 • post flashover (uncontrolled ventilation)
 ~600$^\degree F$ to >1800$^\degree F$ within a matter of seconds

Fire and Life Safety

– fire resistive construction (I-FR, IA)
 • concrete and protected steel
 • may or may not be compartmented
 • typical construction for high-rises
– typical hazards
 • fires are generally content fires
 • not a severe “collapse” hazard
 • spalling of concrete
 • central HVAC as a smoke travel path
 (also floor/ceiling penetrations and voids)
 • hazards may be most obvious on floor above fire floor
 • seek assistance in evaluating severe structural damage

Fire and Life Safety

• high rise fires
 – 1911 Triangle Shirtwaist Company NY, NY
 – 1980 MGM Grand Hotel Las Vegas, NV
 – 1986 Dupont Plaza San Juan, Puerto Rico
 – 1988 1st Interstate Bank Los Angeles, CA
 – 1991 One Meridian Plaza Philadelphia, PA
Fire and Life Safety

– non-combustible or limited combustible construction (II-H, II-A)
 • metal, masonry, or concrete wall construction with metal roof
– typical hazards
 • unprotected lightweight steel roof joist & W's
 • roofs typically flat with combustible weather covering
 • ignition of built-up roofing may be above ceilings ABOVE fire sprinklers
 • concentrated roof loading by HVAC units, etc.
 • steel expands and loses 40% capacity after ~10 min at 593°C (1100°F)

Fire and Life Safety

– ordinary construction (III)
 • freestanding masonry or brick walls
 • solid wood joist flooring and roofing (typical within older buildings)
 • wood truss assemblies (typical in newer buildings)
– typical hazards
 • combustible concealed spaces
 • peaked roof concealed spaces
 • lack of or damaged draft or fire stopping
 • decorative parapet walls
 • “fire cut” beams

Fire and Life Safety

– heavy timber construction
 • wood frame or large cross section (8 in. min vertical members and 6 in. min horizontal members)
– typical hazards
 • high fuel load exclusive of contents
 • masonry wall collapse (similar to ordinary construction)
 • may survive long exposure, but control in advanced stages may be very difficult
 • radiant heat exposures may be extreme

Fire and Life Safety

– wood frame construction
 • light weight wood members typically consisting of wood 2 x’s
– typical hazards
 • entire frame is part of fuel package
 • small dimension timber can be compromised more quickly than heavy timber
 • Braced Frame (mortised connections), Platform (sectional framing & multi-story), and Balloon Framing (fire & smoke travel paths)
 • failure of wood frame bearing walls may trigger simultaneous collapse of floors and/or roof
Fire and Life Safety (from DHS training program)

- type V wood frame truss construction

Figure 4 — Metal tooth plate connectors like those shown are used extensively in lightweight parallel and pitch chord trusses. The multi-tooth plates are embedded in the firewood filler, using high temperature clamps.

Fire and Life Safety

- what can I do?

 – break up the fuel continuity during construction and in the completed project:
 - fire barriers
 - open spaces
 - fire resistive and noncombustible construction

 – even the use of simple gypsum wallboard partitions and closed doors can help

Fire and Life Safety

- what can I do?

 – utilize wood carefully, install attic draft stops, early and correctly

Fire and Life Safety

- what can I do?

 – utilize fire detection and suppression systems wisely
Fire and Life Safety

- what can I do?
 - consider your occupants and realistic opportunities for people to escape

Fire and Life Safety

- what can I do?
 - push for the durability of fire resistive coatings to be re-evaluated and improved

Fire and Life Safety

- what can I do?
 - consider the abilities and resources of firefighting and rescue personnel near your projects
 - be realistic
 - how they can reach the scene of the emergency

Fire and Life Safety

- what can I do?
 - use the rule of thumb of the emergency services - risk vs. benefit
 - risk (invest) a lot for a life (maybe even another life)
 - risk little for little gain
 - but again be realistic
 - we cannot and will not eliminate all risk
Fire and Life Safety

- know the applicable codes
- understand the code and standards development processes
 - International Code Council (a consortium of ICBO, BOCA and SBCCI)
 - meant to create a single consistent series of codes for the USA (world?)
 - National Fire Protection Association (NFPA)

Fire and Life Safety

- International Code Series – e.g.
 - International Building Code (IBC)
 - International Fire Code (IFC)

Fire and Life Safety

- NFPA 1, Fire Prevention Code (New UFC)
- NFPA 70, National Electrical Code
- NFPA 5000, Building Code (vs. IBC)

Fire and Life Safety

- many other standards and codes
 - NFPA 14, Standpipes (Hose Systems)
 - NFPA 13, Fire Sprinkler Standard
Fire and Life Safety

- NFPA 70, National Electrical Code (NEC)

Fire and Life Safety

- NFPA 72, Fire Detection and Alarm

Fire and Life Safety

- ANSI A-17.1 & A-17.3 Elevators

Fire and Life Safety

- performance based codes
 - NFPA 101, chapter 5
 - 2003 ICC Performance for Buildings and Facilities
 - NFPA 5000, chapter 5
Fire and Life Safety

• references

5. FIRE LOSS IN THE UNITED STATES DURING 2003, by Michael J. Karter Jr., National Fire Protection Association, Fire Analysis & Research Division, Quincy, MA, September 2004

Structural “History”

• by building system and relevance

www.en.wikipedia

www.esbny.com
Final Exam Material

my list:

- systems focus
 - general behavior, resistance to lateral loading (shear walls, etc.)
 - hazard considerations
 - behavior of elements
 - beams & columns (statics)
 - continuous beams, cables, arches, rigid frames, plates, grids, membranes, shells, nets

- code and design requirements
 - methodologies by materials
 - construction supervision

- system selection
 - wood, steel, concrete, masonry
 - component types
 - connections
 - foundations